BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 18296698)

  • 1. The preferential retention of starch synthesis genes reveals the impact of whole-genome duplication on grass evolution.
    Wu Y; Zhu Z; Ma L; Chen M
    Mol Biol Evol; 2008 Jun; 25(6):1003-6. PubMed ID: 18296698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for an ancient whole-genome duplication event in rice and other cereals.
    Tian CG; Xiong YQ; Liu TY; Sun SH; Chen LB; Chen MS
    Yi Chuan Xue Bao; 2005 May; 32(5):519-27. PubMed ID: 16018264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication.
    Chapman BA; Bowers JE; Feltus FA; Paterson AH
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2730-5. PubMed ID: 16467140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis.
    Zhang PG; Huang SZ; Pin AL; Adams KL
    Mol Biol Evol; 2010 Jul; 27(7):1686-97. PubMed ID: 20185454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon.
    Paterson AH; Chapman BA; Kissinger JC; Bowers JE; Feltus FA; Estill JC
    Trends Genet; 2006 Nov; 22(11):597-602. PubMed ID: 16979781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes.
    Thomas BC; Pedersen B; Freeling M
    Genome Res; 2006 Jul; 16(7):934-46. PubMed ID: 16760422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection and mutation on microRNA target sequences during rice evolution.
    Guo X; Gui Y; Wang Y; Zhu QH; Helliwell C; Fan L
    BMC Genomics; 2008 Oct; 9():454. PubMed ID: 18831738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family.
    Sampedro J; Lee Y; Carey RE; dePamphilis C; Cosgrove DJ
    Plant J; 2005 Nov; 44(3):409-19. PubMed ID: 16236151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversification of non-TIR class NB-LRR genes in relation to whole-genome duplication events in Arabidopsis.
    Nobuta K; Ashfield T; Kim S; Innes RW
    Mol Plant Microbe Interact; 2005 Feb; 18(2):103-9. PubMed ID: 15720078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incongruent evolution of chromosomal size in rice.
    Guo X; Xu G; Zhang Y; Wen X; Hu W; Fan L
    Genet Mol Res; 2006 Jun; 5(2):373-89. PubMed ID: 16819716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence.
    Johnson DA; Thomas MA
    Mol Biol Evol; 2007 Nov; 24(11):2412-23. PubMed ID: 17827171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.
    Yu G; Olsen KM; Schaal BA
    Mol Biol Evol; 2011 Jan; 28(1):659-71. PubMed ID: 20829346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa).
    Gao C; Han B
    Gene; 2009 Feb; 431(1-2):86-94. PubMed ID: 19071198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes.
    Brunet FG; Roest Crollius H; Paris M; Aury JM; Gibert P; Jaillon O; Laudet V; Robinson-Rechavi M
    Mol Biol Evol; 2006 Sep; 23(9):1808-16. PubMed ID: 16809621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid evolution in a pair of recent duplicate segments of rice.
    Jiang H; Liu D; Gu Z; Wang W
    J Exp Zool B Mol Dev Evol; 2007 Jan; 308(1):50-7. PubMed ID: 16838296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps.
    Tang H; Wang X; Bowers JE; Ming R; Alam M; Paterson AH
    Genome Res; 2008 Dec; 18(12):1944-54. PubMed ID: 18832442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin.
    Buggs RJ; Chamala S; Wu W; Tate JA; Schnable PS; Soltis DE; Soltis PS; Barbazuk WB
    Curr Biol; 2012 Feb; 22(3):248-52. PubMed ID: 22264605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergence in expression between duplicated genes in Arabidopsis.
    Ganko EW; Meyers BC; Vision TJ
    Mol Biol Evol; 2007 Oct; 24(10):2298-309. PubMed ID: 17670808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.