BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18296705)

  • 1. Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae.
    Warthmann N; Das S; Lanz C; Weigel D
    Mol Biol Evol; 2008 May; 25(5):892-902. PubMed ID: 18296705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant sequence similarities in promoters and precursors of Arabidopsis thaliana non-conserved microRNAs.
    Wang Y; Hindemitt T; Mayer KF
    Bioinformatics; 2006 Nov; 22(21):2585-9. PubMed ID: 16901935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related species.
    Schein M; Yang Z; Mitchell-Olds T; Schmid KJ
    Mol Biol Evol; 2004 Apr; 21(4):659-69. PubMed ID: 14739246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa.
    Li Y; Li W; Jin YX
    Acta Biochim Biophys Sin (Shanghai); 2005 Feb; 37(2):75-87. PubMed ID: 15685364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice.
    Jiang D; Yin C; Yu A; Zhou X; Liang W; Yuan Z; Xu Y; Yu Q; Wen T; Zhang D
    Cell Res; 2006 May; 16(5):507-18. PubMed ID: 16699546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.
    Bonnet E; Wuyts J; Rouzé P; Van de Peer Y
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11511-6. PubMed ID: 15272084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation and divergence of plant microRNA genes.
    Zhang B; Pan X; Cannon CH; Cobb GP; Anderson TA
    Plant J; 2006 Apr; 46(2):243-59. PubMed ID: 16623887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the self-incompatibility system in the Brassicaceae: identification of S-locus receptor kinase (SRK) in self-incompatible Capsella grandiflora.
    Paetsch M; Mayland-Quellhorst S; Neuffer B
    Heredity (Edinb); 2006 Oct; 97(4):283-90. PubMed ID: 16773120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of plant microRNA gene families.
    Li A; Mao L
    Cell Res; 2007 Mar; 17(3):212-8. PubMed ID: 17130846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr.
    Bechsgaard JS; Castric V; Charlesworth D; Vekemans X; Schierup MH
    Mol Biol Evol; 2006 Sep; 23(9):1741-50. PubMed ID: 16782760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-hit trigger for siRNA biogenesis in plants.
    Axtell MJ; Jan C; Rajagopalan R; Bartel DP
    Cell; 2006 Nov; 127(3):565-77. PubMed ID: 17081978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of complexity in miRNA-mediated gene regulation systems.
    Takuno S; Innan H
    Trends Genet; 2008 Feb; 24(2):56-9. PubMed ID: 18192068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals.
    Glazov EA; McWilliam S; Barris WC; Dalrymple BP
    Mol Biol Evol; 2008 May; 25(5):939-48. PubMed ID: 18281269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the trnF(GAA) gene in Arabidopsis relatives and the brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene.
    Koch MA; Dobes C; Matschinger M; Bleeker W; Vogel J; Kiefer M; Mitchell-Olds T
    Mol Biol Evol; 2005 Apr; 22(4):1032-43. PubMed ID: 15689533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational identification of novel microRNA homologs in the chimpanzee genome.
    Baev V; Daskalova E; Minkov I
    Comput Biol Chem; 2009 Feb; 33(1):62-70. PubMed ID: 18760970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae).
    Zhou D; Zhou J; Meng L; Wang Q; Xie H; Guan Y; Ma Z; Zhong Y; Chen F; Liu J
    Gene; 2009 Jul; 441(1-2):36-44. PubMed ID: 18640249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319.
    Palatnik JF; Wollmann H; Schommer C; Schwab R; Boisbouvier J; Rodriguez R; Warthmann N; Allen E; Dezulian T; Huson D; Carrington JC; Weigel D
    Dev Cell; 2007 Jul; 13(1):115-25. PubMed ID: 17609114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana.
    Li X; Zhang YZ
    Comput Biol Chem; 2005 Oct; 29(5):360-7. PubMed ID: 16221572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress.
    Hummel I; Gouesbet G; El Amrani A; Aïnouche A; Couée I
    Gene; 2004 Nov; 342(2):199-209. PubMed ID: 15527979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.