BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 18297506)

  • 1. Customization of a generic 3D model of the distal femur using diagnostic radiographs.
    Schmutz B; Reynolds KJ; Slavotinek JP
    J Med Eng Technol; 2008; 32(2):156-61. PubMed ID: 18297506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a generic 3D model of the distal femur.
    Schmutz B; Reynolds KJ; Slavotinek JP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):305-12. PubMed ID: 17132616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method to reconstruct patient-specific proximal femur surface models from planar pre-operative radiographs.
    Galibarov PE; Prendergast PJ; Lennon AB
    Med Eng Phys; 2010 Dec; 32(10):1180-8. PubMed ID: 20933453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur.
    Laporte S; Skalli W; de Guise JA; Lavaste F; Mitton D
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):1-6. PubMed ID: 12623432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical evaluation and stress distribution of intact canine femur.
    Verim O; Tasgetiren S; Er MS; Ozdemir V; Yuran AF
    Int J Med Robot; 2013 Mar; 9(1):103-8. PubMed ID: 22987569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing parametric solid modelling/reconfiguration, global shape modelling and free-form deformation for the generation of 3D digital models of femurs from X-ray images.
    Filippi S; Motyl B; Bandera C
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):101-8. PubMed ID: 18651260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiograph-based femur morphing method.
    Zanetti EM; Crupi V; Bignardi C; Calderale PM
    Med Biol Eng Comput; 2005 Mar; 43(2):181-8. PubMed ID: 15865125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: a validation study.
    Zheng G; Schumann S
    Med Phys; 2009 Apr; 36(4):1155-66. PubMed ID: 19472621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametric subject-specific model for in vivo 3D reconstruction using bi-planar X-rays: application to the upper femoral extremity.
    Baudoin A; Skalli W; de Guise JA; Mitton D
    Med Biol Eng Comput; 2008 Aug; 46(8):799-805. PubMed ID: 18543013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic methods for characterization of sexual dimorphism of adult femora: distal femur.
    Mahfouz MR; Merkl BC; Fatah EE; Booth R; Argenson JN
    Comput Methods Biomech Biomed Engin; 2007 Dec; 10(6):447-56. PubMed ID: 17891677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided methods for assessing lower limb deformities in orthopaedic surgery planning.
    Subburaj K; Ravi B; Agarwal M
    Comput Med Imaging Graph; 2010 Jun; 34(4):277-88. PubMed ID: 19963346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomical comparison and evaluation of human proximal femurs modeling via different devices and FEM analysis.
    Verim Ö; Taşgetiren S; Er MS; Timur M; Yuran AF
    Int J Med Robot; 2013 Jun; 9(2):e19-24. PubMed ID: 22711421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic extraction of proximal femur contours from calibrated X-ray images using 3D statistical models: an in vitro study.
    Dong X; Zheng G
    Int J Med Robot; 2009 Jun; 5(2):213-22. PubMed ID: 19343704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pose-invariant 3D proximal femur estimation through bi-planar image segmentation with hierarchical higher-order graph-based priors.
    Wang C; Boussaid H; Simon L; Lazennec JY; Paragios N
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):346-53. PubMed ID: 22003718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A new method to reconstruct the spatial structure of human proximal femur and establishment of the finite element model].
    Ma X; Fu X; Ma J; Zhao Y; Wang T; Wang Z; Zhang Y; Dong B; Yang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):71-5. PubMed ID: 21485187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models.
    Rathnayaka K; Momot KI; Noser H; Volp A; Schuetz MA; Sahama T; Schmutz B
    Med Eng Phys; 2012 Apr; 34(3):357-63. PubMed ID: 21855392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D reconstruction of the proximal femur with low-dose digital stereoradiography.
    Le Bras A; Laporte S; Bousson V; Mitton D; De Guise JA; Laredo JD; Skalli W
    Comput Aided Surg; 2004; 9(3):51-7. PubMed ID: 15792937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femur shape prediction by multiple regression based on quadric surface fitting.
    Sholukha V; Chapman T; Salvia P; Moiseev F; Euran F; Rooze M; Van Sint Jan S
    J Biomech; 2011 Feb; 44(4):712-8. PubMed ID: 21122862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer system for definition of the quantitative geometry of musculature from CT images.
    Daniel M; Iglic A; Kralj-Iglic V; Konvicková S
    Comput Methods Biomech Biomed Engin; 2005 Feb; 8(1):25-9. PubMed ID: 16154867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D reconstruction of the pelvis from bi-planar radiography.
    Mitton D; Deschênes S; Laporte S; Godbout B; Bertrand S; de Guise JA; Skalli W
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):1-5. PubMed ID: 16880151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.