BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18297652)

  • 1. Proteomics, networks and connectivity indices.
    González-Díaz H; González-Díaz Y; Santana L; Ubeira FM; Uriarte E
    Proteomics; 2008 Feb; 8(4):750-78. PubMed ID: 18297652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Proteome-Property Relationships (QPPRs). Part 1: finding biomarkers of organic drugs with mean Markov connectivity indices of spiral networks of blood mass spectra.
    Cruz-Monteagudo M; Munteanu CR; Borges F; Cordeiro MN; Uriarte E; González-Díaz H
    Bioorg Med Chem; 2008 Nov; 16(22):9684-93. PubMed ID: 18951807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D-RNA-coupling numbers: a new computational chemistry approach to link secondary structure topology with biological function.
    González-Díaz H; Agüero-Chapin G; Varona J; Molina R; Delogu G; Santana L; Uriarte E; Podda G
    J Comput Chem; 2007 Apr; 28(6):1049-56. PubMed ID: 17279496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of topological indices of macro/supramolecular RNA complex networks.
    Agüero-Chapín G; Antunes A; Ubeira FM; Chou KC; González-Díaz H
    J Chem Inf Model; 2008 Nov; 48(11):2265-77. PubMed ID: 18937437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of mass spectrometry data in proteomics.
    Matthiesen R; Jensen ON
    Methods Mol Biol; 2008; 453():105-22. PubMed ID: 18712299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pitfalls of proteomics experiments without the correct use of bioinformatics tools.
    Biron DG; Brun C; Lefevre T; Lebarbenchon C; Loxdale HD; Chevenet F; Brizard JP; Thomas F
    Proteomics; 2006 Oct; 6(20):5577-96. PubMed ID: 16991202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cartographers toolbox: building bigger and better human protein interaction networks.
    Sanderson CM
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):1-11. PubMed ID: 19282470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complexity of the secreted NPA and FAR lipid-binding protein families of Haemonchus contortus revealed by an iterative proteomics-bioinformatics approach.
    Kuang L; Colgrave ML; Bagnall NH; Knox MR; Qian M; Wijffels G
    Mol Biochem Parasitol; 2009 Nov; 168(1):84-94. PubMed ID: 19615410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary and structural feedback on selection of sequences for comparative analysis of proteins.
    Mihalek I; Res I; Lichtarge O
    Proteins; 2006 Apr; 63(1):87-99. PubMed ID: 16397893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of scale-free distribution in protein-protein interaction networks based on random selection of interacting domain pairs.
    Nacher JC; Hayashida M; Akutsu T
    Biosystems; 2009 Feb; 95(2):155-9. PubMed ID: 19010382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: Transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray.
    Gagna CE; Lambert WC
    Med Hypotheses; 2006; 67(5):1099-114. PubMed ID: 16828979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toponomics: studying protein-protein interactions and protein networks in intact tissue.
    Pierre S; Scholich K
    Mol Biosyst; 2010 Apr; 6(4):641-7. PubMed ID: 20237641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using spectral moments of spiral networks based on PSA/mass spectra outcomes to derive quantitative proteome-disease relationships (QPDRs) and predicting prostate cancer.
    Ferino G; González-Díaz H; Delogu G; Podda G; Uriarte E
    Biochem Biophys Res Commun; 2008 Jul; 372(2):320-5. PubMed ID: 18503754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel intra-molecular protein-protein interaction code based on partial complementary coding of co-locating amino acids.
    Biro JC
    Med Hypotheses; 2006; 66(1):137-42. PubMed ID: 16168570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HP-Lattice QSAR for dynein proteins: experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretic study of a Leishmania infantum sequence.
    Dea-Ayuela MA; Pérez-Castillo Y; Meneses-Marcel A; Ubeira FM; Bolas-Fernández F; Chou KC; González-Díaz H
    Bioorg Med Chem; 2008 Aug; 16(16):7770-6. PubMed ID: 18662882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medicinal chemistry and bioinformatics--current trends in drugs discovery with networks topological indices.
    González-Díaz H; Vilar S; Santana L; Uriarte E
    Curr Top Med Chem; 2007; 7(10):1015-29. PubMed ID: 17508935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices.
    Munteanu CR; González-Díaz H; Magalhães AL
    J Theor Biol; 2008 Sep; 254(2):476-82. PubMed ID: 18606172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing cellular complexity with proteomics.
    Blackstock W; Rowley A
    Curr Opin Mol Ther; 1999 Dec; 1(6):702-11. PubMed ID: 19629867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.