BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 18297793)

  • 1. Overlaps between the various biodegradation pathways in Sphingomonas subarctica SA1.
    Magony M; Kákonyi I; Gara A; Rapali P; Perei K; Kovács KL; Rákhely G
    Acta Biol Hung; 2007; 58 Suppl():37-49. PubMed ID: 18297793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b.
    Gunam IB; Yaku Y; Hirano M; Yamamura K; Tomita F; Sone T; Asano K
    J Biosci Bioeng; 2006 Apr; 101(4):322-7. PubMed ID: 16716940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of a novel type of protocatechuate 3,4-dioxygenase with the ability to oxidize 4-sulfocatechol.
    Hammer A; Stolz A; Knackmuss H
    Arch Microbiol; 1996 Aug; 166(2):92-100. PubMed ID: 8772173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete genome sequence of Novosphingobium resinovorum SA1, a versatile xenobiotic-degrading bacterium capable of utilizing sulfanilic acid.
    Hegedűs B; Kós PB; Bálint B; Maróti G; Gan HM; Perei K; Rákhely G
    J Biotechnol; 2017 Jan; 241():76-80. PubMed ID: 27851894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of sulfanilic acid by Pseudomonas paucimobilis.
    Perei K; Rákhely G; Kiss I; Polyák B; Kovács KL
    Appl Microbiol Biotechnol; 2001 Jan; 55(1):101-7. PubMed ID: 11234949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starvation- and xenobiotic-related transcriptomic responses of the sulfanilic acid-degrading bacterium, Novosphingobium resinovorum SA1.
    Hegedüs B; Kós PB; Bende G; Bounedjoum N; Maróti G; Laczi K; Szuhaj M; Perei K; Rákhely G
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):305-318. PubMed ID: 29051988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separate Upper Pathway Ring Cleavage Dioxygenases Are Required for Growth of Sphingomonas wittichii Strain RW1 on Dibenzofuran and Dibenzo-
    Mutter TY; Zylstra GJ
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741618
    [No Abstract]   [Full Text] [Related]  

  • 8. Two kinds of chlorocatechol 1,2-dioxygenase from 2,4-dichlorophenoxyacetate-degrading Sphingomonas sp. strain TFD44.
    Lang GH; Ogawa N; Tanaka Y; Fujii T; Fulthorpe RR; Fukuda M; Miyashita K
    Biochem Biophys Res Commun; 2005 Jul; 332(4):941-8. PubMed ID: 15916749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of bisphenol A and related compounds by Sphingomonas sp. strain BP-7 isolated from seawater.
    Sakai K; Yamanaka H; Moriyoshi K; Ohmoto T; Ohe T
    Biosci Biotechnol Biochem; 2007 Jan; 71(1):51-7. PubMed ID: 17213659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1.13.11.2 and EC 1.14.12.-) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1.
    Junker F; Leisinger T; Cook AM
    Microbiology (Reading); 1994 Jul; 140 ( Pt 7)():1713-22. PubMed ID: 8075807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The degradation of alkylphenols by Sphingomonas sp. strain TTNP3 - a review on seven years of research.
    Kolvenbach BA; Corvini PF
    N Biotechnol; 2012 Nov; 30(1):88-95. PubMed ID: 22842087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering catalytic properties of 3-chlorocatechol-oxidizing extradiol dioxygenase from Sphingomonas xenophaga BN6 by random mutagenesis.
    Riegert U; Bürger S; Stolz A
    J Bacteriol; 2001 Apr; 183(7):2322-30. PubMed ID: 11244073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase.
    Kasai D; Masai E; Katayama Y; Fukuda M
    FEMS Microbiol Lett; 2007 Sep; 274(2):323-8. PubMed ID: 17645527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434.
    Baboshin M; Akimov V; Baskunov B; Born TL; Khan SU; Golovleva L
    Biodegradation; 2008 Jul; 19(4):567-76. PubMed ID: 17957485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical Mechanisms and Catabolic Enzymes Involved in Bacterial Estrogen Degradation Pathways.
    Chen YL; Yu CP; Lee TH; Goh KS; Chu KH; Wang PH; Ismail W; Shih CJ; Chiang YR
    Cell Chem Biol; 2017 Jun; 24(6):712-724.e7. PubMed ID: 28552583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 19F NMR study of fluorobenzoate biodegradation by Sphingomonas sp. HB-1.
    Boersma FG; McRoberts WC; Cobb SL; Murphy CD
    FEMS Microbiol Lett; 2004 Aug; 237(2):355-61. PubMed ID: 15321683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44.
    Thiel M; Kaschabek SR; Gröning J; Mau M; Schlömann M
    Arch Microbiol; 2005 Feb; 183(2):80-94. PubMed ID: 15688254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of 4-chloronitrobenzene by biochemical cooperation between Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 isolated from activated sludge.
    Zhang L; Wang X; Jiao Y; Chen X; Zhou L; Guo K; Ge F; Wu J
    Chemosphere; 2013 May; 91(9):1243-9. PubMed ID: 23473429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of 4-aminobenzenesulfonate by Ralstonia sp. PBA and Hydrogenophaga sp. PBC isolated from textile wastewater treatment plant.
    Gan HM; Shahir S; Ibrahim Z; Yahya A
    Chemosphere; 2011 Jan; 82(4):507-13. PubMed ID: 21094980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids.
    Murdoch RW; Hay AG
    Appl Environ Microbiol; 2005 Oct; 71(10):6121-5. PubMed ID: 16204529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.