These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 18298106)
1. Combined quantum mechanical and molecular mechanics studies of the electron-transfer reactions involving carbon tetrachloride in solution. Valiev M; Bylaska EJ; Dupuis M; Tratnyek PG J Phys Chem A; 2008 Mar; 112(12):2713-20. PubMed ID: 18298106 [TBL] [Abstract][Full Text] [Related]
2. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations. Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751 [TBL] [Abstract][Full Text] [Related]
3. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions. Rosta E; Klähn M; Warshel A J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904 [TBL] [Abstract][Full Text] [Related]
4. Reaction mechanism and tautomeric equilibrium of 2-mercaptopyrimidine in the gas phase and in aqueous solution: a combined Monte Carlo and quantum mechanics study. Lima MC; Coutinho K; Canuto S; Rocha WR J Phys Chem A; 2006 Jun; 110(22):7253-61. PubMed ID: 16737277 [TBL] [Abstract][Full Text] [Related]
5. Theoretical determination of the standard reduction potentials of pheophytin-a in N,N-dimethyl formamide and membrane. Mehta N; Datta SN J Phys Chem B; 2007 Jun; 111(25):7210-7. PubMed ID: 17536851 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
7. Theoretical investigation of CO interaction with copper sites in zeolites: periodic DFT and hybrid quantum mechanical/interatomic potential function study. Bludský O; Silhan M; Nachtigall P; Bucko T; Benco L; Hafner J J Phys Chem B; 2005 May; 109(19):9631-8. PubMed ID: 16852159 [TBL] [Abstract][Full Text] [Related]
8. Variational formulation of perturbative explicitly-correlated coupled-cluster methods. Torheyden M; Valeev EF Phys Chem Chem Phys; 2008 Jun; 10(23):3410-20. PubMed ID: 18535724 [TBL] [Abstract][Full Text] [Related]
9. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping. Xiang Y; Warshel A J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038 [TBL] [Abstract][Full Text] [Related]
10. A quantum mechanics/molecular mechanics study of the catalytic mechanism and product specificity of viral histone lysine methyltransferase. Zhang X; Bruice TC Biochemistry; 2007 Aug; 46(34):9743-51. PubMed ID: 17676763 [TBL] [Abstract][Full Text] [Related]
11. Novel quantum mechanical/molecular mechanical method combined with the theory of energy representation: free energy calculation for the Beckmann rearrangement promoted by proton transfers in the supercritical water. Takahashi H; Tanabe K; Aketa M; Kishi R; Furukawa S; Nakano M J Chem Phys; 2007 Feb; 126(8):084508. PubMed ID: 17343459 [TBL] [Abstract][Full Text] [Related]
12. Cluster model for the ionic product of water: accuracy and limitations of common density functional methods. Svozil D; Jungwirth P J Phys Chem A; 2006 Jul; 110(29):9194-9. PubMed ID: 16854033 [TBL] [Abstract][Full Text] [Related]
13. Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study. Díaz N; Suárez D J Phys Chem B; 2008 Jul; 112(28):8412-24. PubMed ID: 18570467 [TBL] [Abstract][Full Text] [Related]
14. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I. Kozmon S; Tvaroska I J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443 [TBL] [Abstract][Full Text] [Related]
15. A quantum chemical approach to the free energy calculations in condensed systems: the QM/MM method combined with the theory of energy representation. Takahashi H; Matubayasi N; Nakahara M; Nitta T J Chem Phys; 2004 Sep; 121(9):3989-99. PubMed ID: 15332945 [TBL] [Abstract][Full Text] [Related]
16. Quantum mechanical/effective fragment potential (QM/EFP) study of phosphate monoester aminolysis in aqueous solution. Ferreira DE; Florentino BP; Rocha WR; Nome F J Phys Chem B; 2009 Nov; 113(44):14831-6. PubMed ID: 19817372 [TBL] [Abstract][Full Text] [Related]
17. C-H bond activation of methane in aqueous solution: a hybrid quantum mechanical/effective fragment potential study. Da Silva JC; Rocha WR J Comput Chem; 2011 Dec; 32(16):3383-92. PubMed ID: 21919013 [TBL] [Abstract][Full Text] [Related]
18. High-level ab initio studies of hydrogen abstraction from prototype hydrocarbon systems. Temelso B; Sherrill CD; Merkle RC; Freitas RA J Phys Chem A; 2006 Sep; 110(38):11160-73. PubMed ID: 16986851 [TBL] [Abstract][Full Text] [Related]
19. Geometry optimization based on linear response free energy with quantum mechanical/molecular mechanical method: applications to Menshutkin-type and Claisen rearrangement reactions in aqueous solution. Higashi M; Hayashi S; Kato S J Chem Phys; 2007 Apr; 126(14):144503. PubMed ID: 17444719 [TBL] [Abstract][Full Text] [Related]
20. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains. Nagy PI; Erhardt PW J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]