BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 18298120)

  • 1. "Supramolecular" assembly of gold nanorods end-terminated with polymer "pom-poms": effect of pom-pom structure on the association modes.
    Nie Z; Fava D; Rubinstein M; Kumacheva E
    J Am Chem Soc; 2008 Mar; 130(11):3683-9. PubMed ID: 18298120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ organization of gold nanorods on mixed self-assembled-monolayer substrates.
    Zareie MH; Xu X; Cortie MB
    Small; 2007 Jan; 3(1):139-45. PubMed ID: 17294485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt-mediated kinetics of the self-assembly of gold nanorods end-tethered with polymer ligands.
    Liu K; Resetco C; Kumacheva E
    Nanoscale; 2012 Oct; 4(20):6574-80. PubMed ID: 22975762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standing arrays of gold nanorods end-tethered with polymer ligands.
    Petukhova A; Greener J; Liu K; Nykypanchuk D; Nicolaÿ R; Matyjaszewski K; Kumacheva E
    Small; 2012 Mar; 8(5):731-7. PubMed ID: 22228672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular organization in organic-inorganic heterogeneous hybrid catalysts formed from polyoxometalate and poly(ampholyte) polymer.
    Raj G; Swalus C; Guillet A; Devillers M; Nysten B; Gaigneaux EM
    Langmuir; 2013 Apr; 29(13):4388-95. PubMed ID: 23480273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods.
    Qiu Y; Liu Y; Wang L; Xu L; Bai R; Ji Y; Wu X; Zhao Y; Li Y; Chen C
    Biomaterials; 2010 Oct; 31(30):7606-19. PubMed ID: 20656344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D self-bundled CdS nanorods with micrometer dimension in the absence of an external directing process.
    Kang CC; Lai CW; Peng HC; Shyue JJ; Chou PT
    ACS Nano; 2008 Apr; 2(4):750-6. PubMed ID: 19206607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size tunable gold nanorods evenly distributed in the channels of mesoporous silica.
    Li Z; Kübel C; Pârvulescu VI; Richards R
    ACS Nano; 2008 Jun; 2(6):1205-12. PubMed ID: 19206338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH controlled synthesis of high aspect-ratio gold nanorods.
    Wei Q; Ji J; Shen J
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5708-14. PubMed ID: 19198293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-standing 3D supramolecular hybrid particle structures.
    Ling XY; Phang IY; Maijenburg W; Schönherr H; Reinhoudt DN; Vancso GJ; Huskens J
    Angew Chem Int Ed Engl; 2009; 48(5):983-7. PubMed ID: 19107882
    [No Abstract]   [Full Text] [Related]  

  • 11. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods.
    Ni W; Kou X; Yang Z; Wang J
    ACS Nano; 2008 Apr; 2(4):677-86. PubMed ID: 19206598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity.
    Takahashi H; Niidome Y; Niidome T; Kaneko K; Kawasaki H; Yamada S
    Langmuir; 2006 Jan; 22(1):2-5. PubMed ID: 16378388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the degree of polymerization, bond lengths, and bond angles of plasmonic polymers.
    Lukach A; Liu K; Therien-Aubin H; Kumacheva E
    J Am Chem Soc; 2012 Nov; 134(45):18853-9. PubMed ID: 23078101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface.
    Ryu JH; Park S; Kim B; Klaikherd A; Russell TP; Thayumanavan S
    J Am Chem Soc; 2009 Jul; 131(29):9870-1. PubMed ID: 19621947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination chemistry approach for the end-to-end assembly of gold nanorods.
    Selvakannan PR; Dumas E; Dumur F; Péchoux C; Beaunier P; Etcheberry A; Sécheresse F; Remita H; Mayer CR
    J Colloid Interface Sci; 2010 Sep; 349(1):93-7. PubMed ID: 20541215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ plasmonic counter for polymerization of chains of gold nanorods in solution.
    Liu K; Ahmed A; Chung S; Sugikawa K; Wu G; Nie Z; Gordon R; Kumacheva E
    ACS Nano; 2013 Jul; 7(7):5901-10. PubMed ID: 23786318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of gold nanorods induced by intermolecular interactions of surface-anchored lipids.
    Nakashima H; Furukawa K; Kashimura Y; Torimitsu K
    Langmuir; 2008 Jun; 24(11):5654-8. PubMed ID: 18442278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange.
    Wijaya A; Hamad-Schifferli K
    Langmuir; 2008 Sep; 24(18):9966-9. PubMed ID: 18717601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo monitoring of intravenously injected gold nanorods using near-infrared light.
    Niidome T; Akiyama Y; Shimoda K; Kawano T; Mori T; Katayama Y; Niidome Y
    Small; 2008 Jul; 4(7):1001-7. PubMed ID: 18581412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.
    Ferhan AR; Guo L; Kim DH
    Langmuir; 2010 Jul; 26(14):12433-42. PubMed ID: 20557083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.