These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18298145)

  • 1. Suppressing the fragmentation of fragile molecules in helium nanodroplets by coembedding with water: possible role of the electric dipole moment.
    Ren Y; Kresin VV
    J Chem Phys; 2008 Feb; 128(7):074303. PubMed ID: 18298145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron impact ionization in helium nanodroplets: controlling fragmentation by active cooling of molecular ions.
    Lewis WK; Applegate BE; Sztáray J; Sztáray B; Baer T; Bemish RJ; Miller RE
    J Am Chem Soc; 2004 Sep; 126(36):11283-92. PubMed ID: 15355110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragmentation of HCN in optically selected mass spectrometry: nonthermal ion cooling in helium nanodroplets.
    Lewis WK; Bemish RJ; Miller RE
    J Chem Phys; 2005 Oct; 123(14):141103. PubMed ID: 16238367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron impact ionization of haloalkanes in helium nanodroplets.
    Yang S; Brereton SM; Wheeler MD; Ellis AM
    J Phys Chem A; 2006 Feb; 110(5):1791-7. PubMed ID: 16451009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft or hard ionization of molecules in helium nanodroplets? An electron impact investigation of alcohols and ethers.
    Yang S; Brereton SM; Wheeler MD; Ellis AM
    Phys Chem Chem Phys; 2005 Dec; 7(24):4082-8. PubMed ID: 16474872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron impact ionization of water-doped superfluid helium nanodroplets: observation of He(H(2)O)(n)(+) clusters.
    Yang S; Brereton SM; Nandhra S; Ellis AM; Shang B; Yuan LF; Yang J
    J Chem Phys; 2007 Oct; 127(13):134303. PubMed ID: 17919020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion-molecule reactions and fragmentation patterns in helium nanodroplets.
    Boatwright A; Jeffs J; Stace AJ
    J Phys Chem A; 2007 Aug; 111(31):7481-8. PubMed ID: 17585742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionization and fragmentation of isomeric van der Waals complexes embedded in helium nanodroplets.
    Lewis WK; Lindsay CM; Miller RE
    J Chem Phys; 2008 Nov; 129(20):201101. PubMed ID: 19045843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.
    Bonhommeau D; Halberstadt N; Viel A
    J Chem Phys; 2006 Jan; 124(2):024328. PubMed ID: 16422604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron attachment to trinitrotoluene (TNT) embedded in He droplets: complete freezing of dissociation intermediates in an extended range of electron energies.
    Mauracher A; Schöbel H; Ferreira da Silva F; Edtbauer A; Mitterdorfer C; Denifl S; Märk TD; Illenberger E; Scheier P
    Phys Chem Chem Phys; 2009 Oct; 11(37):8240-3. PubMed ID: 19756280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Communication: the formation of helium cluster cations following the ionization of helium nanodroplets: influence of droplet size and dopant.
    Shepperson B; Liu J; Ellis AM; Yang S
    J Chem Phys; 2011 Jul; 135(4):041101. PubMed ID: 21806083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipole moments of molecules solvated in helium nanodroplets.
    Stiles PL; Nauta K; Miller RE
    Phys Rev Lett; 2003 Apr; 90(13):135301. PubMed ID: 12689300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selecting the size of helium nanodroplets using time-resolved probing of a pulsed helium droplet beam.
    Yang S; Ellis AM
    Rev Sci Instrum; 2008 Jan; 79(1):016106. PubMed ID: 18248078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric deflection of imidazole dimers and trimers in helium nanodroplets: Dipole moments, structure, and fragmentation.
    Kamerin BS; Niman JW; Kresin VV
    J Chem Phys; 2020 Aug; 153(8):081101. PubMed ID: 32872846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragmentation of ionized doped helium nanodroplets: theoretical evidence for a dopant ejection mechanism.
    Bonhommeau D; Lewerenz M; Halberstadt N
    J Chem Phys; 2008 Feb; 128(5):054302. PubMed ID: 18266445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoionization and photofragmentation of SF6 in helium nanodroplets.
    Peterka DS; Kim JH; Wang CC; Neumark DM
    J Phys Chem B; 2006 Oct; 110(40):19945-55. PubMed ID: 17020381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing charge-transfer processes in helium nanodroplets by optically selected mass spectrometry (OSMS): charge steering by long-range interactions.
    Lewis WK; Lindsay CM; Bemish RJ; Miller RE
    J Am Chem Soc; 2005 May; 127(19):7235-42. PubMed ID: 15884965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bias in the temperature of helium nanodroplets measured by an embedded rotor.
    Lehmann KK
    J Chem Phys; 2004 Jan; 120(2):513-5. PubMed ID: 15267885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragmentation dynamics of ionized neon trimer inside helium nanodroplets: a theoretical study.
    Bonhommeau D; Viel A; Halberstadt N
    J Chem Phys; 2004 Jun; 120(24):11359-62. PubMed ID: 15268166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular beam magnetic resonance in doped helium nanodroplets. A setup for optically detected ESR/NMR in the presence of unresolved Zeeman splittings.
    Koch M; Lanzersdorfer J; Callegari C; Muenter JS; Ernst WE
    J Phys Chem A; 2009 Nov; 113(47):13347-56. PubMed ID: 19921944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.