These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 18298166)

  • 1. Cooperative motion of spheres arranged in periodic grids between two parallel walls.
    Bhattacharya S
    J Chem Phys; 2008 Feb; 128(7):074709. PubMed ID: 18298166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular simulation of cooperative hydrodynamic effects in motion of a periodic array of spheres between parallel walls.
    Kohale SC; Khare R
    J Chem Phys; 2008 Oct; 129(16):164706. PubMed ID: 19045297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic Interactions and Mean Settling Velocity of Porous Particles in a Dilute Suspension.
    Chen SB; Cai A
    J Colloid Interface Sci; 1999 Sep; 217(2):328-340. PubMed ID: 10469541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation study of friction force and torque on a rough spherical particle.
    Kohale SC; Khare R
    J Chem Phys; 2010 Jun; 132(23):234706. PubMed ID: 20572733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion of spheres along a fluid-gas interface.
    Cichocki B; Ekiel-Jezewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2004 Aug; 121(5):2305-16. PubMed ID: 15260785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore-scale dispersion in electrokinetic flow through a random sphere packing.
    Hlushkou D; Khirevich S; Apanasovich V; Seidel-Morgenstern A; Tallarek U
    Anal Chem; 2007 Jan; 79(1):113-21. PubMed ID: 17194128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of conduit geometry and bed porosity on flow and dispersion in noncylindrical sphere packings.
    Khirevich S; Höltzel A; Hlushkou D; Tallarek U
    Anal Chem; 2007 Dec; 79(24):9340-9. PubMed ID: 17985846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigid body dynamics approach to Stokesian dynamics simulations of nonspherical particles.
    Kutteh R
    J Chem Phys; 2010 May; 132(17):174107. PubMed ID: 20459156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic crystals: collective dynamics of regular arrays of spherical particles in a parallel-wall channel.
    Baron M; Bławzdziewicz J; Wajnryb E
    Phys Rev Lett; 2008 May; 100(17):174502. PubMed ID: 18518295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-transport analysis for particulate packings in trapezoidal microchip separation channels.
    Khirevich S; Höltzel A; Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Lab Chip; 2008 Nov; 8(11):1801-8. PubMed ID: 18941678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spherical particle in Poiseuille flow between planar walls.
    Jones RB
    J Chem Phys; 2004 Jul; 121(1):483-500. PubMed ID: 15260570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.
    Berk Usta O; Ladd AJ; Butler JE
    J Chem Phys; 2005 Mar; 122(9):094902. PubMed ID: 15836176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-particle friction in a mesoscopic solvent.
    Lee SH; Kapral R
    J Chem Phys; 2005 Jun; 122(21):214916. PubMed ID: 15974799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force calculation on walls and embedded particles in multiparticle-collision-dynamics simulations.
    Imperio A; Padding JT; Briels W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046704. PubMed ID: 21599331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic friction coefficients of coated spherical particles.
    Cichocki B; Felderhof BU
    J Chem Phys; 2009 Apr; 130(16):164712. PubMed ID: 19405621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid epitaxialization effect on velocity dependence of dynamic contact angle in molecular scale.
    Ito T; Hirata Y; Kukita Y
    J Chem Phys; 2010 Feb; 132(5):054702. PubMed ID: 20136328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.
    Ramachandran V; Venkatesan R; Tryggvason G; Scott Fogler H
    J Colloid Interface Sci; 2000 Sep; 229(2):311-322. PubMed ID: 10985810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic interactions between colloidal particles in a planar pore.
    Bonilla-Capilla B; Ramírez-Saito A; Ojeda-López MA; Arauz-Lara JL
    J Phys Condens Matter; 2012 Nov; 24(46):464126. PubMed ID: 23114421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle dynamics and mixing in the frequency driven "Kelvin cat eyes" flow.
    Tsega Y; Michaelides EE; Eschenazi EV
    Chaos; 2001 Jun; 11(2):351-358. PubMed ID: 12779469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of rotating paramagnetic particles simulated by lattice Boltzmann and particle dynamics methods.
    Yadav A; Calhoun R; Phelan PE; Vuppu AK; Garcia AA; Hayes M
    IEE Proc Nanobiotechnol; 2006 Dec; 153(6):145-50. PubMed ID: 17187446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.