BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 18298180)

  • 1. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor.
    Zhao D; Sakoda H; Sawyer WG; Banks SA; Fregly BJ
    J Biomech Eng; 2008 Feb; 130(1):011004. PubMed ID: 18298180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational wear prediction of a total knee replacement from in vivo kinematics.
    Fregly BJ; Sawyer WG; Harman MK; Banks SA
    J Biomech; 2005 Feb; 38(2):305-14. PubMed ID: 15598458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A holistic numerical model to predict strain hardening and damage of UHMWPE under multiple total knee replacement kinematics and experimental validation.
    Willing R; Kim IY
    J Biomech; 2009 Nov; 42(15):2520-7. PubMed ID: 19647828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements.
    Lin YC; Haftka RT; Queipo NV; Fregly BJ
    J Biomech Eng; 2009 Apr; 131(4):041010. PubMed ID: 19275439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explicit finite element modeling of total knee replacement mechanics.
    Halloran JP; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Feb; 38(2):323-31. PubMed ID: 15598460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of long-term numerical and experimental total knee replacement wear during simulated gait loading.
    Knight LA; Pal S; Coleman JC; Bronson F; Haider H; Levine DL; Taylor M; Rullkoetter PJ
    J Biomech; 2007; 40(7):1550-8. PubMed ID: 17084405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fixed and mobile bearing total knee arthroplasty--influence on wear generation, corresponding wear areas, knee kinematics and particle composition.
    Grupp TM; Kaddick C; Schwiesau J; Maas A; Stulberg SD
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):210-7. PubMed ID: 19118930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retrieval, experimental, and computational assessment of the performance of total knee replacements.
    Rawlinson JJ; Furman BD; Li S; Wright TM; Bartel DL
    J Orthop Res; 2006 Jul; 24(7):1384-94. PubMed ID: 16705715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metrology to quantify wear and creep of polyethylene tibial knee inserts.
    Muratoglu OK; Perinchief RS; Bragdon CR; O'Connor DO; Konrad R; Harris WH
    Clin Orthop Relat Res; 2003 May; (410):155-64. PubMed ID: 12771826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the geometry of total knee implant in the sagittal plane using FEA.
    Dargahi J; Najarian S; Amiri S
    Biomed Mater Eng; 2003; 13(4):439-49. PubMed ID: 14646058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of design, materials and kinematics on the in vitro wear of total knee replacements.
    McEwen HM; Barnett PI; Bell CJ; Farrar R; Auger DD; Stone MH; Fisher J
    J Biomech; 2005 Feb; 38(2):357-65. PubMed ID: 15598464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of polyethylene tibial insert damage from in vivo function and in vitro wear simulation.
    Harman MK; DesJardins J; Benson L; Banks SA; LaBerge M; Hodge WA
    J Orthop Res; 2009 Apr; 27(4):540-8. PubMed ID: 18932244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic finite element prediction of knee wear simulator mechanics.
    Laz PJ; Pal S; Halloran JP; Petrella AJ; Rullkoetter PJ
    J Biomech; 2006; 39(12):2303-10. PubMed ID: 16185700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator.
    Halloran JP; Clary CW; Maletsky LP; Taylor M; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2010 Aug; 132(8):081010. PubMed ID: 20670059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined wear behavior and long-term implant-bone fixation of total knee replacement: a novel in vitro set-up.
    Spinelli M; Affatato S; Cristofolini L; Erani P; Tigani D; Viceconti M
    Artif Organs; 2010 May; 34(5):E177-83. PubMed ID: 20633148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro simulation and quantification of wear within the patellofemoral joint replacement.
    Ellison P; Barton DC; Esler C; Shaw DL; Stone MH; Fisher J
    J Biomech; 2008; 41(7):1407-16. PubMed ID: 18407278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased conformity offers diminishing returns for reducing total knee replacement wear.
    Fregly BJ; Marquez-Barrientos C; Banks SA; DesJardins JD
    J Biomech Eng; 2010 Feb; 132(2):021007. PubMed ID: 20370244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of polyethylene creep behavior on wear in total hip arthroplasty.
    Penmetsa JR; Laz PJ; Petrella AJ; Rullkoetter PJ
    J Orthop Res; 2006 Mar; 24(3):422-7. PubMed ID: 16479600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of valgus/varus malalignment on load distribution in total knee replacements.
    Werner FW; Ayers DC; Maletsky LP; Rullkoetter PJ
    J Biomech; 2005 Feb; 38(2):349-55. PubMed ID: 15598463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.