These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18298279)

  • 21. Lateralization in the predatory behaviour of the common wall lizard (Podarcis muralis).
    Bonati B; Csermely D; Romani R
    Behav Processes; 2008 Nov; 79(3):171-4. PubMed ID: 18703120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Do free-ranging rattlesnakes use thermal cues to evaluate prey?
    Schraft HA; Goodman C; Clark RW
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Mar; 204(3):295-303. PubMed ID: 29218413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How phylogeny and foraging ecology drive the level of chemosensory exploration in lizards and snakes.
    Baeckens S; Van Damme R; Cooper WE
    J Evol Biol; 2017 Mar; 30(3):627-640. PubMed ID: 28009479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prey envenomation does not improve digestive performance in western diamondback rattlesnakes (Crotalus atrox).
    McCue MD
    J Exp Zool A Ecol Genet Physiol; 2007 Oct; 307(10):568-77. PubMed ID: 17671964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rattlesnake hunting behavior: correlations between plasticity of predatory performance and neuroanatomy.
    Kardong KV; Berkhoudt H
    Brain Behav Evol; 1999; 53(1):20-8. PubMed ID: 9858802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimentally altered navigational demands induce changes in the cortical forebrain of free-ranging northern pacific rattlesnakes (Crotalus o. oreganus).
    Holding ML; Frazier JA; Taylor EN; Strand CR
    Brain Behav Evol; 2012; 79(3):144-54. PubMed ID: 22237415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of poststrike disturbance on strike-induced chemosensory searching in the prairie rattlesnake (Crotalus v. viridis).
    O'Connell B; Chiszar D; Smith HM
    Behav Neural Biol; 1981 Jul; 32(3):343-9. PubMed ID: 7283924
    [No Abstract]   [Full Text] [Related]  

  • 28. Conspecific chemical cues facilitate mate trailing by invasive Argentine black and white tegus.
    Richard SA; Bukovich IMG; Tillman EA; Jayamohan S; Humphrey JS; Carrington PE; Bruce WE; Kluever BM; Avery ML; Parker MR
    PLoS One; 2020; 15(8):e0236660. PubMed ID: 32785239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Behavioural examination of the infrared sensitivity of rattlesnakes (Crotalus atrox).
    Ebert J; Westhoff G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Sep; 192(9):941-7. PubMed ID: 16788817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behavioral thermal tolerances of free-ranging rattlesnakes (Crotalus oreganus) during the summer foraging season.
    Putman BJ; Clark RW
    J Therm Biol; 2017 Apr; 65():8-15. PubMed ID: 28343580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Infrared imaging in vipers: differential responses of crotaline and viperine snakes to paired thermal targets.
    Safer AB; Grace MS
    Behav Brain Res; 2004 Sep; 154(1):55-61. PubMed ID: 15302110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal dependence of chemical assessment of predation risk affects the ability of wall lizards, Podarcis muralis, to avoid unsafe refuges.
    Amo L; López P; Martín J
    Physiol Behav; 2004 Oct; 82(5):913-8. PubMed ID: 15451658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The function of oscillatory tongue-flicks in snakes: insights from kinematics of tongue-flicking in the banded water snake (Nerodia fasciata).
    Daghfous G; Smargiassi M; Libourel PA; Wattiez R; Bels V
    Chem Senses; 2012 Nov; 37(9):883-96. PubMed ID: 22942105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical delivery to the vomeronasal organs and functional domain of squamate chemoreception.
    Graves BM
    Brain Behav Evol; 1993; 41(3-5):198-202. PubMed ID: 8477341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Systems of chemoperception in decapod crayfish].
    Fedotov VP
    Zh Evol Biokhim Fiziol; 2009; 45(1):3-24. PubMed ID: 19370985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative functional analysis of the hyolingual anatomy in lacertid lizards.
    Herrel A; Canbek M; Ozelmas U; Uyanoğlu M; Karakaya M
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Jun; 284(2):561-73. PubMed ID: 15880434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurotropic effects of venoms and other factors that promote prey acquisition.
    Gennaro JF; Hall HP; Casey ER; Hayes WK
    J Exp Zool A Ecol Genet Physiol; 2007 Sep; 307(9):488-99. PubMed ID: 17620305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of prey capture kinematics and the role of lingual sensory feedback in the lizard Pogona vitticeps.
    Schaerlaeken V; Meyers JJ; Herrel A
    Zoology (Jena); 2007; 110(2):127-38. PubMed ID: 17368008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Naive ophiophagus lizards recognize and avoid venomous snakes using chemical cues.
    Phillips JA; Alberts AC
    J Chem Ecol; 1992 Oct; 18(10):1775-83. PubMed ID: 24254719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Snake aggregation pheromones: source and chemosensory mediation in western ribbon snakes (Thamnophis proximus).
    Graves BM; Halpern M; Friesen JL
    J Comp Psychol; 1991 Jun; 105(2):140-4. PubMed ID: 1860308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.