These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 18298325)

  • 1. Peptide motifs for insertion of radiolabeled biomolecules into cells and routing to the nucleus for cancer imaging or radiotherapeutic applications.
    Costantini DL; Hu M; Reilly RM
    Cancer Biother Radiopharm; 2008 Feb; 23(1):3-24. PubMed ID: 18298325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 111In- or 99mTc-labeled recombinant VEGF bioconjugates: in vitro evaluation of their cytotoxicity on porcine aortic endothelial cells overexpressing Flt-1 receptors.
    Chan C; Cai Z; Su R; Reilly RM
    Nucl Med Biol; 2010 Feb; 37(2):105-15. PubMed ID: 20152709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Block copolymer micelles target Auger electron radiotherapy to the nucleus of HER2-positive breast cancer cells.
    Hoang B; Reilly RM; Allen C
    Biomacromolecules; 2012 Feb; 13(2):455-65. PubMed ID: 22191486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ¹¹¹In-Bn-DTPA-nimotuzumab with/without modification with nuclear translocation sequence (NLS) peptides: an Auger electron-emitting radioimmunotherapeutic agent for EGFR-positive and trastuzumab (Herceptin)-resistant breast cancer.
    Fasih A; Fonge H; Cai Z; Leyton JV; Tikhomirov I; Done SJ; Reilly RM
    Breast Cancer Res Treat; 2012 Aug; 135(1):189-200. PubMed ID: 22736376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trifunctional somatostatin-based derivatives designed for targeted radiotherapy using auger electron emitters.
    Ginj M; Hinni K; Tschumi S; Schulz S; Maecke HR
    J Nucl Med; 2005 Dec; 46(12):2097-103. PubMed ID: 16330576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake, internalization and nuclear translocation of radioimmunotherapeutic agents.
    Hillyar CR; Cornelissen B; Vallis KA
    Ther Deliv; 2014 Mar; 5(3):319-35. PubMed ID: 24592956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell penetration: scope and limitations by the application of cell-penetrating peptides.
    Reissmann S
    J Pept Sci; 2014 Oct; 20(10):760-84. PubMed ID: 25112216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear Respiratory Factor 2β (NRF-2β) recruits NRF-2α to the nucleus by binding to importin-α:β via an unusual monopartite-type nuclear localization signal.
    Hayashi R; Takeuchi N; Ueda T
    J Mol Biol; 2013 Sep; 425(18):3536-48. PubMed ID: 23856623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Favorable tumor uptake and nuclear transport of Auger electrons by nuclear targeting with 111In-trastuzumab in an intraperitoneal tumor mouse model.
    Keiko Li H; Hasegawa S
    Nucl Med Commun; 2022 Jul; 43(7):763-769. PubMed ID: 35506286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide receptor imaging and therapy.
    Kwekkeboom D; Krenning EP; de Jong M
    J Nucl Med; 2000 Oct; 41(10):1704-13. PubMed ID: 11038002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PET and SPECT.
    Haberkorn U
    Handb Exp Pharmacol; 2008; (185 Pt 2):13-35. PubMed ID: 18626597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Nuclear localization of oligonucleotides decoy effect on nuclear factor-kappaB activity].
    Liu Y; Quan F; Wang J; Bai X
    Sheng Wu Gong Cheng Xue Bao; 2010 Dec; 26(12):1683-9. PubMed ID: 21387831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of nuclear import and export signals within Fli-1: roles of the nuclear import signals in Fli-1-dependent activation of megakaryocyte-specific promoters.
    Hu W; Philips AS; Kwok JC; Eisbacher M; Chong BH
    Mol Cell Biol; 2005 Apr; 25(8):3087-108. PubMed ID: 15798196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proline-tyrosine nuclear localization signal (PY-NLS) is required for the nuclear import of fission yeast PAB2, but not of human PABPN1.
    Mallet PL; Bachand F
    Traffic; 2013 Mar; 14(3):282-94. PubMed ID: 23279110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auger electrons for cancer therapy - a review.
    Ku A; Facca VJ; Cai Z; Reilly RM
    EJNMMI Radiopharm Chem; 2019 Oct; 4(1):27. PubMed ID: 31659527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting active nuclear import for efficient delivery of Auger electron emitters into the cell nucleus.
    Rosenkranz AA; Slastnikova TA; Durymanov MO; Georgiev GP; Sobolev AS
    Int J Radiat Biol; 2023; 99(1):28-38. PubMed ID: 32856963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology.
    Suzuki T; Wu D; Schlachetzki F; Li JY; Boado RJ; Pardridge WM
    J Nucl Med; 2004 Oct; 45(10):1766-75. PubMed ID: 15471847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive inhibition of hTERT mRNA expression and telomerase activity by DNA-signal-peptide conjugates.
    Kubo T; Bakalova R; Zhelev Z; Ohba H; Fujii M
    Nucleic Acids Symp Ser (Oxf); 2005; (49):337-8. PubMed ID: 17150771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody-based cancer treatment with ultra-short range Auger electron-emitting radionuclides: dual receptor and DNA targeting strategies.
    Karagiannis TC
    Hell J Nucl Med; 2007; 10(3):155-9. PubMed ID: 18084655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of binding proteins for nuclear localization signals of the glucocorticoid and thyroid hormone receptors.
    LaCasse EC; Lochnan HA; Walker P; Lefebvre YA
    Endocrinology; 1993 Mar; 132(3):1017-25. PubMed ID: 8440170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.