These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 18298656)
1. Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. Liu M; Han ZC J Cell Mol Med; 2008 Aug; 12(4):1155-68. PubMed ID: 18298656 [TBL] [Abstract][Full Text] [Related]
2. Reduction of marginal mass required for successful islet transplantation in a diabetic rat model using adipose tissue-derived mesenchymal stromal cells. Navaei-Nigjeh M; Moloudizargari M; Baeeri M; Gholami M; Lotfibakhshaiesh N; Soleimani M; Vasheghani-Farahani E; Ai J; Abdollahi M Cytotherapy; 2018 Sep; 20(9):1124-1142. PubMed ID: 30068495 [TBL] [Abstract][Full Text] [Related]
3. Therapeutic Effects of Insulin-Producing Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Type 1 Diabetes Mouse Model. Park YM; Yang CM; Cho HY Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805883 [TBL] [Abstract][Full Text] [Related]
4. Mesenchymal stem cells and differentiated insulin producing cells are new horizons for pancreatic regeneration in type I diabetes mellitus. Domouky AM; Hegab AS; Al-Shahat A; Raafat N Int J Biochem Cell Biol; 2017 Jun; 87():77-85. PubMed ID: 28385600 [TBL] [Abstract][Full Text] [Related]
5. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Sun Y; Chen L; Hou XG; Hou WK; Dong JJ; Sun L; Tang KX; Wang B; Song J; Li H; Wang KX Chin Med J (Engl); 2007 May; 120(9):771-6. PubMed ID: 17531117 [TBL] [Abstract][Full Text] [Related]
6. Adipose tissue-derived mesenchymal stromal cells efficiently differentiate into insulin-producing cells in pancreatic islet microenvironment both in vitro and in vivo. Karaoz E; Okcu A; Ünal ZS; Subasi C; Saglam O; Duruksu G Cytotherapy; 2013 May; 15(5):557-70. PubMed ID: 23388582 [TBL] [Abstract][Full Text] [Related]
7. Do we really need to differentiate mesenchymal stem cells into insulin-producing cells for attenuation of the autoimmune responses in type 1 diabetes: immunoprophylactic effects of precursors to insulin-producing cells. Sharma A; Rani R Stem Cell Res Ther; 2017 Jul; 8(1):167. PubMed ID: 28701182 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro. He D; Wang J; Gao Y; Zhang Y Int J Mol Med; 2011 Dec; 28(6):1019-24. PubMed ID: 21837359 [TBL] [Abstract][Full Text] [Related]
10. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes. Mohammadi Ayenehdeh J; Niknam B; Rasouli S; Hashemi SM; Rahavi H; Rezaei N; Soleimani M; Liaeiha A; Niknam MH; Tajik N Immunol Lett; 2017 Aug; 188():21-31. PubMed ID: 28506774 [TBL] [Abstract][Full Text] [Related]
11. Improving the efficacy of type 1 diabetes therapy by transplantation of immunoisolated insulin-producing cells. Ngoc PK; Phuc PV; Nhung TH; Thuy DT; Nguyet NT Hum Cell; 2011 Jun; 24(2):86-95. PubMed ID: 21567289 [TBL] [Abstract][Full Text] [Related]
12. Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation. Kim SJ; Choi YS; Ko ES; Lim SM; Lee CW; Kim DI J Biosci Bioeng; 2012 Jun; 113(6):771-7. PubMed ID: 22425523 [TBL] [Abstract][Full Text] [Related]
13. Making surrogate β-cells from mesenchymal stromal cells: perspectives and future endeavors. Bhonde RR; Sheshadri P; Sharma S; Kumar A Int J Biochem Cell Biol; 2014 Jan; 46():90-102. PubMed ID: 24275096 [TBL] [Abstract][Full Text] [Related]
14. Notch signaling: a novel regulating differentiation mechanism of human umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells in vitro. Hu YH; Wu DQ; Gao F; Li GD; Zhang XC Chin Med J (Engl); 2010 Mar; 123(5):606-14. PubMed ID: 20367990 [TBL] [Abstract][Full Text] [Related]
15. Mesenchymal stem cell-based therapy for the treatment of type 1 diabetes mellitus. Mabed M; Shahin M Curr Stem Cell Res Ther; 2012 May; 7(3):179-90. PubMed ID: 22023626 [TBL] [Abstract][Full Text] [Related]
16. Co-transplantation of mesenchymal stromal cells and cord blood cells in treatment of diabetes. Xiao N; Zhao X; Luo P; Guo J; Zhao Q; Lu G; Cheng L Cytotherapy; 2013 Nov; 15(11):1374-84. PubMed ID: 24094489 [TBL] [Abstract][Full Text] [Related]
17. Sonic hedgehog pathway suppression and reactivation accelerates differentiation of rat adipose-derived mesenchymal stromal cells toward insulin-producing cells. Dayer D; Tabar MH; Moghimipour E; Tabandeh MR; Ghadiri AA; Bakhshi EA; Orazizadeh M; Ghafari MA Cytotherapy; 2017 Aug; 19(8):937-946. PubMed ID: 28647274 [TBL] [Abstract][Full Text] [Related]
18. Control of Hyperglycemia Using Differentiated and Undifferentiated Mesenchymal Stem Cells in Rats with Type 1 Diabetes. Aali E; Madjd Z; Tekiyehmaroof N; Sharifi AM Cells Tissues Organs; 2020; 209(1):13-25. PubMed ID: 32634811 [TBL] [Abstract][Full Text] [Related]
19. Durable Control of Autoimmune Diabetes in Mice Achieved by Intraperitoneal Transplantation of "Neo-Islets," Three-Dimensional Aggregates of Allogeneic Islet and "Mesenchymal Stem Cells". Westenfelder C; Gooch A; Hu Z; Ahlstrom J; Zhang P Stem Cells Transl Med; 2017 Jul; 6(7):1631-1643. PubMed ID: 28467694 [TBL] [Abstract][Full Text] [Related]
20. Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes. Stiner R; Alexander M; Liu G; Liao W; Liu Y; Yu J; Pone EJ; Zhao W; Lakey JRT Cell Tissue Res; 2019 Nov; 378(2):155-162. PubMed ID: 31209568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]