BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 18299149)

  • 1. Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite (100) surface.
    Chen X; Wu T; Wang Q; Shen JW
    Biomaterials; 2008 May; 29(15):2423-32. PubMed ID: 18299149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces.
    Zhou H; Wu T; Dong X; Wang Q; Shen J
    Biochem Biophys Res Commun; 2007 Sep; 361(1):91-6. PubMed ID: 17637458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio modeling of protein/biomaterial interactions: competitive adsorption between glycine and water onto hydroxyapatite surfaces.
    Rimola A; Corno M; Zicovich-Wilson CM; Ugliengo P
    Phys Chem Chem Phys; 2009 Oct; 11(40):9005-7. PubMed ID: 19812818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio modeling of protein/biomaterial interactions: glycine adsorption at hydroxyapatite surfaces.
    Rimola A; Corno M; Zicovich-Wilson CM; Ugliengo P
    J Am Chem Soc; 2008 Dec; 130(48):16181-3. PubMed ID: 18989958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior regulation of adsorbed proteins via hydroxyapatite surface texture control.
    Dong XL; Zhou HL; Wu T; Wang Q
    J Phys Chem B; 2008 Apr; 112(15):4751-9. PubMed ID: 18366207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite as a key biomaterial: quantum-mechanical simulation of its surfaces in interaction with biomolecules.
    Corno M; Rimola A; Bolis V; Ugliengo P
    Phys Chem Chem Phys; 2010 Jun; 12(24):6309-29. PubMed ID: 20485772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface transformation of silicon-doped hydroxyapatite immersed in culture medium under dynamic and static conditions.
    da Silva HM; Mateescu M; Ponche A; Damia C; Champion E; Soares G; Anselme K
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):349-55. PubMed ID: 19800204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of dynamic culture for evaluating osteoblast activity on dense silicon-substituted hydroxyapatite.
    da Silva HM; Mateescu M; Damia C; Champion E; Soares G; Anselme K
    Colloids Surf B Biointerfaces; 2010 Oct; 80(2):138-44. PubMed ID: 20579858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion of protein residues to substituted (111) diamond surfaces: an insight from density functional theory and classical molecular dynamics simulations.
    Borisenko KB; Reavy HJ; Zhao Q; Abel EW
    J Biomed Mater Res A; 2008 Sep; 86(4):1113-21. PubMed ID: 18080307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical study of biotin chemisorption on Si-SiC(001) surfaces.
    Kanai Y; Cicero G; Selloni A; Car R; Galli G
    J Phys Chem B; 2005 Jul; 109(28):13656-62. PubMed ID: 16852711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of hydroxyapatite surface coverage by amelogenin nanospheres following the Langmuir model for protein adsorption.
    Bouropoulos N; Moradian-Oldak J
    Calcif Tissue Int; 2003 May; 72(5):599-603. PubMed ID: 12704567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulation to characterize the adsorption behavior of a fibrinogen gamma-chain fragment.
    Agashe M; Raut V; Stuart SJ; Latour RA
    Langmuir; 2005 Feb; 21(3):1103-17. PubMed ID: 15667197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals, and adhesive interactions.
    Vandiver J; Dean D; Patel N; Botelho C; Best S; Santos JD; Lopes MA; Bonfield W; Ortiz C
    J Biomed Mater Res A; 2006 Aug; 78(2):352-63. PubMed ID: 16646067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins.
    Raffaini G; Ganazzoli F
    Macromol Biosci; 2007 May; 7(5):552-66. PubMed ID: 17477442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory study of the binding of glycine, proline, and hydroxyproline to the hydroxyapatite (0001) and (0110) surfaces.
    Almora-Barrios N; Austen KF; de Leeuw NH
    Langmuir; 2009 May; 25(9):5018-25. PubMed ID: 19397352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: a self-consistent field theory.
    Feuz L; Leermakers FA; Textor M; Borisov O
    Langmuir; 2008 Jul; 24(14):7232-44. PubMed ID: 18558731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces.
    Shen JW; Wu T; Wang Q; Pan HH
    Biomaterials; 2008 Feb; 29(5):513-32. PubMed ID: 17988731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting silicate substituted hydroxyapatite by solid-state NMR.
    Gasquères G; Bonhomme C; Maquet J; Babonneau F; Hayakawa S; Kanaya T; Osaka A
    Magn Reson Chem; 2008 Apr; 46(4):342-6. PubMed ID: 18306175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive composites consisting of PEEK and calcium silicate powders.
    Kim IY; Sugino A; Kikuta K; Ohtsuki C; Cho SB
    J Biomater Appl; 2009 Aug; 24(2):105-18. PubMed ID: 18757493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.