These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 18299194)
1. Quantitative structural-activity relationship (QSAR) study for fungicidal activities of thiazoline derivatives against rice blast. Song JS; Moon T; Nam KD; Lee JK; Hahn HG; Choi EJ; Yoon CN Bioorg Med Chem Lett; 2008 Mar; 18(6):2133-42. PubMed ID: 18299194 [TBL] [Abstract][Full Text] [Related]
2. Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression. Du H; Wang J; Hu Z; Yao X; Zhang X J Agric Food Chem; 2008 Nov; 56(22):10785-92. PubMed ID: 18950187 [TBL] [Abstract][Full Text] [Related]
3. Quantitative structure-polarization relationships (QSPR) study of BTEX tracers for the formation of antibody-BTEX-EDF complex. Moon T; Chi MW; Choi MJ; Yoon CN Bioorg Med Chem Lett; 2004 Jul; 14(13):3461-6. PubMed ID: 15177453 [TBL] [Abstract][Full Text] [Related]
4. Ascherxanthone B from Aschersonia luteola, a new antifungal compound active against rice blast pathogen Magnaporthe grisea. Chutrakul C; Boonruangprapa T; Suvannakad R; Isaka M; Sirithunya P; Toojinda T; Kirtikara K J Appl Microbiol; 2009 Nov; 107(5):1624-31. PubMed ID: 19457038 [TBL] [Abstract][Full Text] [Related]
5. Botcinins A, B, C, and D, metabolites produced by Botrytis cinerea, and their antifungal activity against Magnaporthe grisea, a pathogen of rice blast disease. Tani H; Koshino H; Sakuno E; Nakajima H J Nat Prod; 2005 Dec; 68(12):1768-72. PubMed ID: 16378371 [TBL] [Abstract][Full Text] [Related]
6. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Nandi S; Vracko M; Bagchi MC Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360 [TBL] [Abstract][Full Text] [Related]
7. Quantitative study of the structure-retention index relationship in the imine family. Acevedo-Martínez J; Escalona-Arranz JC; Villar-Rojas A; Téllez-Palmero F; Pérez-Rosés R; González L; Carrasco-Velar R J Chromatogr A; 2006 Jan; 1102(1-2):238-44. PubMed ID: 16288769 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and antifungal activities of trichodermin derivatives as fungicides on rice. Xu X; Cheng J; Zhou Y; Zhang C; Ou X; Su W; Zhao J; Zhu G Chem Biodivers; 2013 Apr; 10(4):600-11. PubMed ID: 23576346 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of infection of the rice blast fungus by halisulfate 1, an isocitrate lyase inhibitor. Shin DS; Lee TH; Lee HS; Shin J; Oh KB FEMS Microbiol Lett; 2007 Jul; 272(1):43-7. PubMed ID: 17456183 [TBL] [Abstract][Full Text] [Related]
10. An accurate nonlinear QSAR model for the antitumor activities of chloroethylnitrosoureas using neural networks. Qin Y; Deng H; Yan H; Zhong R J Mol Graph Model; 2011 Apr; 29(6):826-33. PubMed ID: 21353608 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and fungicidal activity of enantiomerically pure (R)- and (S)-silicon-containing azole fungicides. Itoh H; Furukawa Y; Tsuda M; Takeshiba H Bioorg Med Chem; 2004 Jul; 12(13):3561-7. PubMed ID: 15186840 [TBL] [Abstract][Full Text] [Related]
12. Neural networks: Accurate nonlinear QSAR model for HEPT derivatives. Douali L; Villemin D; Cherqaoui D J Chem Inf Comput Sci; 2003; 43(4):1200-7. PubMed ID: 12870912 [TBL] [Abstract][Full Text] [Related]
13. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. Tendulkar SR; Saikumari YK; Patel V; Raghotama S; Munshi TK; Balaram P; Chattoo BB J Appl Microbiol; 2007 Dec; 103(6):2331-9. PubMed ID: 18045418 [TBL] [Abstract][Full Text] [Related]
14. QSAR analyses of 3-(4-benzylpiperidin-1-yl)-N-phenylpropylamine derivatives as potent CCR5 antagonists. Roy K; Leonard JT J Chem Inf Model; 2005; 45(5):1352-68. PubMed ID: 16180912 [TBL] [Abstract][Full Text] [Related]
15. QSAR by LFER model of cytotoxicity data of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives using principal component factor analysis and genetic function approximation. Roy K; Leonard JT Bioorg Med Chem; 2005 Apr; 13(8):2967-73. PubMed ID: 15781406 [TBL] [Abstract][Full Text] [Related]
16. Quantitative structure-activity relationship (QSAR) study of a series of benzimidazole derivatives as inhibitors of Saccharomyces cerevisiae. Podunavac-Kuzmanović SO; Cvetković DD; Jevrić LR; Uzelac NJ Acta Chim Slov; 2013; 60(1):26-33. PubMed ID: 23841329 [TBL] [Abstract][Full Text] [Related]
17. Predictive QSAR modeling of HIV reverse transcriptase inhibitor TIBO derivatives. Mandal AS; Roy K Eur J Med Chem; 2009 Apr; 44(4):1509-24. PubMed ID: 18760864 [TBL] [Abstract][Full Text] [Related]
18. Artificial neural networks in prediction of antifungal activity of a series of pyridine derivatives against Candida albicans. Buciński A; Socha A; Wnuk M; Baczek T; Nowaczyk A; Krysiński J; Goryński K; Koba M J Microbiol Methods; 2009 Jan; 76(1):25-9. PubMed ID: 18824043 [TBL] [Abstract][Full Text] [Related]
19. QSAR study of 4-phenylpiperidine derivatives as mu opioid agonists by neural network method. Wang XH; Tang Y; Xie Q; Qiu ZB Eur J Med Chem; 2006 Feb; 41(2):226-32. PubMed ID: 16403590 [TBL] [Abstract][Full Text] [Related]
20. The development of 3D-QSAR study and recursive partitioning of heterocyclic quinone derivatives with antifungal activity. Choi SY; Shin JH; Ryu CK; Nam KY; No KT; Park Choo HY Bioorg Med Chem; 2006 Mar; 14(5):1608-17. PubMed ID: 16263301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]