These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 18299349)
1. IKK/NF-kappaB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. Bakkar N; Wang J; Ladner KJ; Wang H; Dahlman JM; Carathers M; Acharyya S; Rudnicki MA; Hollenbach AD; Guttridge DC J Cell Biol; 2008 Feb; 180(4):787-802. PubMed ID: 18299349 [TBL] [Abstract][Full Text] [Related]
2. IKKα and alternative NF-κB regulate PGC-1β to promote oxidative muscle metabolism. Bakkar N; Ladner K; Canan BD; Liyanarachchi S; Bal NC; Pant M; Periasamy M; Li Q; Janssen PM; Guttridge DC J Cell Biol; 2012 Feb; 196(4):497-511. PubMed ID: 22351927 [TBL] [Abstract][Full Text] [Related]
3. NF-kappaB functions in stromal fibroblasts to regulate early postnatal muscle development. Dahlman JM; Bakkar N; He W; Guttridge DC J Biol Chem; 2010 Feb; 285(8):5479-87. PubMed ID: 20018862 [TBL] [Abstract][Full Text] [Related]
4. HTLV-1 tax-induced rapid senescence is driven by the transcriptional activity of NF-κB and depends on chronically activated IKKα and p65/RelA. Ho YK; Zhi H; DeBiaso D; Philip S; Shih HM; Giam CZ J Virol; 2012 Sep; 86(17):9474-83. PubMed ID: 22740410 [TBL] [Abstract][Full Text] [Related]
5. Classical NF-κB activation impairs skeletal muscle oxidative phenotype by reducing IKK-α expression. Remels AH; Gosker HR; Langen RC; Polkey M; Sliwinski P; Galdiz J; van den Borst B; Pansters NA; Schols AM Biochim Biophys Acta; 2014 Feb; 1842(2):175-85. PubMed ID: 24215713 [TBL] [Abstract][Full Text] [Related]
6. Aberrant IKKα and IKKβ cooperatively activate NF-κB and induce EGFR/AP1 signaling to promote survival and migration of head and neck cancer. Nottingham LK; Yan CH; Yang X; Si H; Coupar J; Bian Y; Cheng TF; Allen C; Arun P; Gius D; Dang L; Van Waes C; Chen Z Oncogene; 2014 Feb; 33(9):1135-47. PubMed ID: 23455325 [TBL] [Abstract][Full Text] [Related]
8. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis. Bakkar N; Guttridge DC Physiol Rev; 2010 Apr; 90(2):495-511. PubMed ID: 20393192 [TBL] [Abstract][Full Text] [Related]
9. PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of MyoD and NF-kappaB. Micheli L; Leonardi L; Conti F; Maresca G; Colazingari S; Mattei E; Lira SA; Farioli-Vecchioli S; Caruso M; Tirone F J Biol Chem; 2011 Feb; 286(7):5691-707. PubMed ID: 21127072 [TBL] [Abstract][Full Text] [Related]
10. Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis. Straughn AR; Hindi SM; Xiong G; Kumar A J Mol Cell Biol; 2019 Jan; 11(1):53-66. PubMed ID: 30239789 [TBL] [Abstract][Full Text] [Related]
11. The canonical nuclear factor-κB pathway regulates cell survival in a developmental model of spinal cord motoneurons. Mincheva S; Garcera A; Gou-Fabregas M; Encinas M; Dolcet X; Soler RM J Neurosci; 2011 Apr; 31(17):6493-503. PubMed ID: 21525290 [TBL] [Abstract][Full Text] [Related]
12. NF-κB negatively impacts the myogenic potential of muscle-derived stem cells. Lu A; Proto JD; Guo L; Tang Y; Lavasani M; Tilstra JS; Niedernhofer LJ; Wang B; Guttridge DC; Robbins PD; Huard J Mol Ther; 2012 Mar; 20(3):661-8. PubMed ID: 22158056 [TBL] [Abstract][Full Text] [Related]
13. Caspase inhibition sensitizes inhibitor of NF-kappaB kinase beta-deficient fibroblasts to caspase-independent cell death via the generation of reactive oxygen species. May MJ; Madge LA J Biol Chem; 2007 Jun; 282(22):16105-16. PubMed ID: 17430892 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of the IKK/NF-κB pathway by AAV gene transfer improves muscle regeneration in older mdx mice. Tang Y; Reay DP; Salay MN; Mi MY; Clemens PR; Guttridge DC; Robbins PD; Huard J; Wang B Gene Ther; 2010 Dec; 17(12):1476-83. PubMed ID: 20720575 [TBL] [Abstract][Full Text] [Related]
15. MyoD Regulates Skeletal Muscle Oxidative Metabolism Cooperatively with Alternative NF-κB. Shintaku J; Peterson JM; Talbert EE; Gu JM; Ladner KJ; Williams DR; Mousavi K; Wang R; Sartorelli V; Guttridge DC Cell Rep; 2016 Oct; 17(2):514-526. PubMed ID: 27705798 [TBL] [Abstract][Full Text] [Related]
16. Nuclear factor kappa B signaling either stimulates or inhibits neurite growth depending on the phosphorylation status of p65/RelA. Gutierrez H; O'Keeffe GW; Gavaldà N; Gallagher D; Davies AM J Neurosci; 2008 Aug; 28(33):8246-56. PubMed ID: 18701687 [TBL] [Abstract][Full Text] [Related]
17. A novel NF-kappaB pathway involving IKKbeta and p65/RelA Ser-536 phosphorylation results in p53 Inhibition in the absence of NF-kappaB transcriptional activity. Jeong SJ; Pise-Masison CA; Radonovich MF; Park HU; Brady JN J Biol Chem; 2005 Mar; 280(11):10326-32. PubMed ID: 15611068 [TBL] [Abstract][Full Text] [Related]
18. Cell migration to CXCL12 requires simultaneous IKKα and IKKβ-dependent NF-κB signaling. Penzo M; Habiel DM; Ramadass M; Kew RR; Marcu KB Biochim Biophys Acta; 2014 Sep; 1843(9):1796-1804. PubMed ID: 24747690 [TBL] [Abstract][Full Text] [Related]
19. NF-kappaB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals. Valdés JA; Hidalgo J; Galaz JL; Puentes N; Silva M; Jaimovich E; Carrasco MA Am J Physiol Cell Physiol; 2007 May; 292(5):C1960-70. PubMed ID: 17215326 [TBL] [Abstract][Full Text] [Related]
20. Cooperation between classical and alternative NF-κB pathways regulates proinflammatory responses in epithelial cells. Tully JE; Nolin JD; Guala AS; Hoffman SM; Roberson EC; Lahue KG; van der Velden J; Anathy V; Blackwell TS; Janssen-Heininger YM Am J Respir Cell Mol Biol; 2012 Oct; 47(4):497-508. PubMed ID: 22652196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]