BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 18299349)

  • 1. IKK/NF-kappaB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis.
    Bakkar N; Wang J; Ladner KJ; Wang H; Dahlman JM; Carathers M; Acharyya S; Rudnicki MA; Hollenbach AD; Guttridge DC
    J Cell Biol; 2008 Feb; 180(4):787-802. PubMed ID: 18299349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IKKα and alternative NF-κB regulate PGC-1β to promote oxidative muscle metabolism.
    Bakkar N; Ladner K; Canan BD; Liyanarachchi S; Bal NC; Pant M; Periasamy M; Li Q; Janssen PM; Guttridge DC
    J Cell Biol; 2012 Feb; 196(4):497-511. PubMed ID: 22351927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NF-kappaB functions in stromal fibroblasts to regulate early postnatal muscle development.
    Dahlman JM; Bakkar N; He W; Guttridge DC
    J Biol Chem; 2010 Feb; 285(8):5479-87. PubMed ID: 20018862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HTLV-1 tax-induced rapid senescence is driven by the transcriptional activity of NF-κB and depends on chronically activated IKKα and p65/RelA.
    Ho YK; Zhi H; DeBiaso D; Philip S; Shih HM; Giam CZ
    J Virol; 2012 Sep; 86(17):9474-83. PubMed ID: 22740410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical NF-κB activation impairs skeletal muscle oxidative phenotype by reducing IKK-α expression.
    Remels AH; Gosker HR; Langen RC; Polkey M; Sliwinski P; Galdiz J; van den Borst B; Pansters NA; Schols AM
    Biochim Biophys Acta; 2014 Feb; 1842(2):175-85. PubMed ID: 24215713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant IKKα and IKKβ cooperatively activate NF-κB and induce EGFR/AP1 signaling to promote survival and migration of head and neck cancer.
    Nottingham LK; Yan CH; Yang X; Si H; Coupar J; Bian Y; Cheng TF; Allen C; Arun P; Gius D; Dang L; Van Waes C; Chen Z
    Oncogene; 2014 Feb; 33(9):1135-47. PubMed ID: 23455325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deubiquitinating enzyme A20 negatively regulates NF-κB signaling in skeletal muscle in mdx mice.
    Charan RA; Hanson R; Clemens PR
    FASEB J; 2012 Feb; 26(2):587-95. PubMed ID: 22012122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis.
    Bakkar N; Guttridge DC
    Physiol Rev; 2010 Apr; 90(2):495-511. PubMed ID: 20393192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of MyoD and NF-kappaB.
    Micheli L; Leonardi L; Conti F; Maresca G; Colazingari S; Mattei E; Lira SA; Farioli-Vecchioli S; Caruso M; Tirone F
    J Biol Chem; 2011 Feb; 286(7):5691-707. PubMed ID: 21127072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis.
    Straughn AR; Hindi SM; Xiong G; Kumar A
    J Mol Cell Biol; 2019 Jan; 11(1):53-66. PubMed ID: 30239789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The canonical nuclear factor-κB pathway regulates cell survival in a developmental model of spinal cord motoneurons.
    Mincheva S; Garcera A; Gou-Fabregas M; Encinas M; Dolcet X; Soler RM
    J Neurosci; 2011 Apr; 31(17):6493-503. PubMed ID: 21525290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NF-κB negatively impacts the myogenic potential of muscle-derived stem cells.
    Lu A; Proto JD; Guo L; Tang Y; Lavasani M; Tilstra JS; Niedernhofer LJ; Wang B; Guttridge DC; Robbins PD; Huard J
    Mol Ther; 2012 Mar; 20(3):661-8. PubMed ID: 22158056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caspase inhibition sensitizes inhibitor of NF-kappaB kinase beta-deficient fibroblasts to caspase-independent cell death via the generation of reactive oxygen species.
    May MJ; Madge LA
    J Biol Chem; 2007 Jun; 282(22):16105-16. PubMed ID: 17430892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the IKK/NF-κB pathway by AAV gene transfer improves muscle regeneration in older mdx mice.
    Tang Y; Reay DP; Salay MN; Mi MY; Clemens PR; Guttridge DC; Robbins PD; Huard J; Wang B
    Gene Ther; 2010 Dec; 17(12):1476-83. PubMed ID: 20720575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MyoD Regulates Skeletal Muscle Oxidative Metabolism Cooperatively with Alternative NF-κB.
    Shintaku J; Peterson JM; Talbert EE; Gu JM; Ladner KJ; Williams DR; Mousavi K; Wang R; Sartorelli V; Guttridge DC
    Cell Rep; 2016 Oct; 17(2):514-526. PubMed ID: 27705798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear factor kappa B signaling either stimulates or inhibits neurite growth depending on the phosphorylation status of p65/RelA.
    Gutierrez H; O'Keeffe GW; Gavaldà N; Gallagher D; Davies AM
    J Neurosci; 2008 Aug; 28(33):8246-56. PubMed ID: 18701687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel NF-kappaB pathway involving IKKbeta and p65/RelA Ser-536 phosphorylation results in p53 Inhibition in the absence of NF-kappaB transcriptional activity.
    Jeong SJ; Pise-Masison CA; Radonovich MF; Park HU; Brady JN
    J Biol Chem; 2005 Mar; 280(11):10326-32. PubMed ID: 15611068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear factor kappaB controls acetylcholine receptor clustering at the neuromuscular junction.
    Wang J; Fu XQ; Lei WL; Wang T; Sheng AL; Luo ZG
    J Neurosci; 2010 Aug; 30(33):11104-13. PubMed ID: 20720118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell migration to CXCL12 requires simultaneous IKKα and IKKβ-dependent NF-κB signaling.
    Penzo M; Habiel DM; Ramadass M; Kew RR; Marcu KB
    Biochim Biophys Acta; 2014 Sep; 1843(9):1796-1804. PubMed ID: 24747690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NF-kappaB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals.
    Valdés JA; Hidalgo J; Galaz JL; Puentes N; Silva M; Jaimovich E; Carrasco MA
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1960-70. PubMed ID: 17215326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.