These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 1829987)
1. Application of fluorescence in situ hybridization techniques in clinical genetics: use of two alphoid repeat probes detecting the centromeres of chromosomes 13 and 21 or chromosomes 14 and 22, respectively. Kølvraa S; Koch J; Gregersen N; Jensen PK; Jørgensen AL; Petersen KB; Rasmussen K; Bolund L Clin Genet; 1991 Apr; 39(4):278-86. PubMed ID: 1829987 [TBL] [Abstract][Full Text] [Related]
2. Analysis of pericentromeric chromosome 21 specific YAC clones by FISH: identification of new markers for molecular-cytogenetic application. Yurov YB; Laurent AM; Marcais B; Vorsanova SG; Roizes G Hum Genet; 1995 Mar; 95(3):287-92. PubMed ID: 7868120 [TBL] [Abstract][Full Text] [Related]
3. [Human alpha-satellite DNA specific to chromosomes 13 and 21: use for the analysis of polymorphism of acrocentric chromosomes and the origin of the additional chromosome 21 in Down's syndrome]. Iurov IuB; Selivanova EA; Deriagin GV Genetika; 1991 Sep; 27(9):1637-47. PubMed ID: 1838097 [TBL] [Abstract][Full Text] [Related]
4. Familial whole-arm translocations (1;19), (9;13), and (12;21): a review of 101 constitutional exchanges. Vázquez-Cárdenas A; Vásquez-Velásquez AI; Barros-Núñez P; Mantilla-Capacho J; Rocchi M; Rivera H J Appl Genet; 2007; 48(3):261-8. PubMed ID: 17666779 [TBL] [Abstract][Full Text] [Related]
5. Extreme reduction of chromosome-specific alpha-satellite array is unusually common in human chromosome 21. Lo AW; Liao GC; Rocchi M; Choo KH Genome Res; 1999 Oct; 9(10):895-908. PubMed ID: 10523519 [TBL] [Abstract][Full Text] [Related]
6. A subfamily of alphoid repetitive DNA shared by the NOR-bearing human chromosomes 14 and 22. Jørgensen AL; Kølvraa S; Jones C; Bak AL Genomics; 1988 Aug; 3(2):100-9. PubMed ID: 3224978 [TBL] [Abstract][Full Text] [Related]
7. Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee. Jørgensen AL; Laursen HB; Jones C; Bak AL Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3310-4. PubMed ID: 1565621 [TBL] [Abstract][Full Text] [Related]
8. [Non-radioactive in situ hybridization of alpha-satellite sequences in cytogenetic diagnosis]. Perfumo C; Arslanian A; Zara F; Piombo G; Pierluigi M Pathologica; 1992; 84(1091):363-9. PubMed ID: 1465321 [TBL] [Abstract][Full Text] [Related]
9. A dicentric variant of chromosome 6: characterization by use of in situ hybridisation with the biotinylated probe p308. Callen DF; Eyre HJ; Ringenbergs ML Clin Genet; 1990 Feb; 37(2):81-3. PubMed ID: 2311270 [TBL] [Abstract][Full Text] [Related]
10. Evolution of alpha-satellite DNA on human acrocentric chromosomes. Choo KH; Vissel B; Earle E Genomics; 1989 Aug; 5(2):332-44. PubMed ID: 2793186 [TBL] [Abstract][Full Text] [Related]
11. Alphoid DNA polymorphisms for chromosome 21 can be distinguished from those of chromosome 13 using probes homologous to both. Jabs EW; Warren AC; Taylor EW; Colyer CR; Meyers DA; Antonarakis SE Genomics; 1991 Jan; 9(1):141-6. PubMed ID: 1672286 [TBL] [Abstract][Full Text] [Related]
13. Centromeric alphoid DNA heteromorphisms of chromosome 22 revealed by FISH-technique. Liehr T; Pfeiffer RA; Trautmann U; Gebhart E Clin Genet; 1998 Mar; 53(3):231-2. PubMed ID: 9630084 [No Abstract] [Full Text] [Related]
14. [Study of alpha-satellite DNA in cosmid libraries, specific for chromosomes 13, 21, and 22, using fluorescence in situ hybridization]. Solov'ev IV; Iurov IuB; Vorsanova SG; Marcais B; Rogaev EI; Kapanadze BI; Brodianskiĭ VM; Iankovskiĭ NK; Roizes G Genetika; 1998 Nov; 34(11):1470-9. PubMed ID: 10096024 [TBL] [Abstract][Full Text] [Related]
15. Identification of the origin of centromeres in whole-arm translocations using fluorescent in situ hybridization with alpha-satellite DNA probes. Tharapel AT; Qumsiyeh MB; Martens PR; Tharapel SA; Dalton JD; Ward JC; Wilroy RS Am J Med Genet; 1991 Jul; 40(1):117-20. PubMed ID: 1887840 [TBL] [Abstract][Full Text] [Related]
16. Prenatal molecular cytogenetic diagnosis of partial tetrasomy 10p due to neocentromere formation in an inversion duplication analphoid marker chromosome. Levy B; Papenhausen P; Tepperberg J; Dunn T; Fallet S; Magid M; Kardon N; Hirschhorn K; Warburton P Cytogenet Cell Genet; 2000; 91(1-4):165-70. PubMed ID: 11173851 [TBL] [Abstract][Full Text] [Related]
17. Breakpoints in Robertsonian translocations are localized to satellite III DNA by fluorescence in situ hybridization. Gravholt CH; Friedrich U; Caprani M; Jørgensen AL Genomics; 1992 Dec; 14(4):924-30. PubMed ID: 1478673 [TBL] [Abstract][Full Text] [Related]
18. Cytogenetic, FISH and DNA studies in 11 individuals from a family with two siblings with dup(21q) Down syndrome. Bartsch O; König U; Petersen MB; Poulsen H; Mikkelsen M; Palau F; Prieto F; Schwinger E Hum Genet; 1993 Sep; 92(2):127-32. PubMed ID: 8370577 [TBL] [Abstract][Full Text] [Related]
19. [Cloned fragment of human alphoid DNA--a molecular marker of the pericentromeric region of chromosome 18]. Aleksandrov IA; Iurov IuB; Mitkevich SP; Gindilis VM Genetika; 1986 May; 22(5):868-76. PubMed ID: 3460927 [TBL] [Abstract][Full Text] [Related]
20. Macromolecular organization of human centromeric regions reveals high-frequency, polymorphic macro DNA repeats. Jabs EW; Goble CA; Cutting GR Proc Natl Acad Sci U S A; 1989 Jan; 86(1):202-6. PubMed ID: 2911568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]