BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18299986)

  • 21. Physiologic deformational loading does not counteract the catabolic effects of interleukin-1 in long-term culture of chondrocyte-seeded agarose constructs.
    Lima EG; Tan AR; Tai T; Bian L; Ateshian GA; Cook JL; Hung CT
    J Biomech; 2008 Nov; 41(15):3253-9. PubMed ID: 18823628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.
    Choi JR; Yong KW; Choi JY
    J Cell Physiol; 2018 Mar; 233(3):1913-1928. PubMed ID: 28542924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes.
    Bian L; Fong JV; Lima EG; Stoker AM; Ateshian GA; Cook JL; Hung CT
    Tissue Eng Part A; 2010 May; 16(5):1781-90. PubMed ID: 20028219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes.
    Démarteau O; Wendt D; Braccini A; Jakob M; Schäfer D; Heberer M; Martin I
    Biochem Biophys Res Commun; 2003 Oct; 310(2):580-8. PubMed ID: 14521950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanomechanical properties of alginate-recovered chondrocyte matrices for cartilage regeneration.
    Tomkoria S; Masuda K; Mao J
    Proc Inst Mech Eng H; 2007 Jul; 221(5):467-73. PubMed ID: 17822149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tailoring hydrogel surface properties to modulate cellular response to shear loading.
    Meinert C; Schrobback K; Levett PA; Lutton C; Sah RL; Klein TJ
    Acta Biomater; 2017 Apr; 52():105-117. PubMed ID: 27729233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular utilization determines viability and matrix distribution profiles in chondrocyte-seeded alginate constructs.
    Heywood HK; Sembi PK; Lee DA; Bader DL
    Tissue Eng; 2004; 10(9-10):1467-79. PubMed ID: 15588406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.
    Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA
    Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Tissue engineering of cartilage replacement material - mechanical stimulation in the in-vitro cultivation of human chondrocytes].
    Nebelung S; Ladenburger A; Gavenis K; Stoffel M; Andereya S; Müller-Rath R
    Z Orthop Unfall; 2011 Jan; 149(1):52-60. PubMed ID: 20941688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes.
    Oliveira JT; Crawford A; Mundy JM; Moreira AR; Gomes ME; Hatton PV; Reis RL
    J Mater Sci Mater Med; 2007 Feb; 18(2):295-302. PubMed ID: 17323161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tribology approach to the engineering and study of articular cartilage.
    Wimmer MA; Grad S; Kaup T; Hänni M; Schneider E; Gogolewski S; Alini M
    Tissue Eng; 2004; 10(9-10):1436-45. PubMed ID: 15588403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serum-free media for articular chondrocytes in vitro expansion.
    Shao XX; Duncan NA; Lin L; Fu X; Zhang JY; Yu CL
    Chin Med J (Engl); 2013 Jul; 126(13):2523-9. PubMed ID: 23823828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The function of mechanical loading on chondrogenesis.
    Chen Z; Yan F; Lu Y
    Front Biosci (Landmark Ed); 2016 Jun; 21(6):1222-32. PubMed ID: 27100502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of alginate, hyaluronate and hyaluronate derivatives biomaterials on synthesis of non-articular chondrocyte extracellular matrix.
    Gerard C; Catuogno C; Amargier-Huin C; Grossin L; Hubert P; Gillet P; Netter P; Dellacherie E; Payan E
    J Mater Sci Mater Med; 2005 Jun; 16(6):541-51. PubMed ID: 15928870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes.
    Schulz RM; Bader A
    Eur Biophys J; 2007 Apr; 36(4-5):539-68. PubMed ID: 17318529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Platelet lysate reduces the chondrocyte dedifferentiation during in vitro expansion: Implications for cartilage tissue engineering.
    De Angelis E; Grolli S; Saleri R; Conti V; Andrani M; Berardi M; Cavalli V; Passeri B; Ravanetti F; Borghetti P
    Res Vet Sci; 2020 Dec; 133():98-105. PubMed ID: 32961475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The functionality and translatability of neocartilage constructs are improved with the combination of fluid-induced shear stress and bioactive factors.
    Salinas EY; Donahue RP; Herrera JM; Hu JC; Athanasiou KA
    FASEB J; 2022 Apr; 36(4):e22225. PubMed ID: 35224777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human serum for tissue engineering of human nasal septal cartilage.
    Alexander TH; Sage AB; Schumacher BL; Sah RL; Watson D
    Otolaryngol Head Neck Surg; 2006 Sep; 135(3):397-403. PubMed ID: 16949971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical vibrations increase the proliferation of articular chondrocytes in high-density culture.
    Kaupp JA; Waldman SD
    Proc Inst Mech Eng H; 2008 Jul; 222(5):695-703. PubMed ID: 18756688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage.
    Kang SW; Yoo SP; Kim BS
    Biomed Mater Eng; 2007; 17(5):269-76. PubMed ID: 17851169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.