These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18299994)

  • 1. Model-based sensorimotor integration for multi-joint control: development of a virtual arm model.
    Song D; Lan N; Loeb GE; Gordon J
    Ann Biomed Eng; 2008 Jun; 36(6):1033-48. PubMed ID: 18299994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflex regulation of antagonist muscles for control of joint equilibrium position.
    Lan N; Li Y; Sun Y; Yang FS
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):60-71. PubMed ID: 15813407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces.
    Chan SS; Moran DW
    J Neural Eng; 2006 Dec; 3(4):327-37. PubMed ID: 17124337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control.
    He X; Du YF; Lan N
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):634-47. PubMed ID: 23268385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback.
    Kistemaker DA; Van Soest AJ; Wong JD; Kurtzer I; Gribble PL
    J Neurophysiol; 2013 Feb; 109(4):1126-39. PubMed ID: 23100138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMClab, a model to assess the contributions of muscle visco-elasticity and afferent feedback to joint dynamics.
    Schouten AC; Mugge W; van der Helm FC
    J Biomech; 2008; 41(8):1659-67. PubMed ID: 18457842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle.
    Mileusnic MP; Brown IE; Lan N; Loeb GE
    J Neurophysiol; 2006 Oct; 96(4):1772-88. PubMed ID: 16672301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual muscle force parameters and fiber operating ranges for elbow flexion-extension and forearm pronation-supination.
    Hale R; Dorman D; Gonzalez RV
    J Biomech; 2011 Feb; 44(4):650-6. PubMed ID: 21145061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical simulation of muscle spindle ensemble encoding during planar movement of the human arm.
    Wallace KR; Kerr GK
    Biol Cybern; 1996 Oct; 75(4):339-50. PubMed ID: 8953743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spindle model responsive to mixed fusimotor inputs and testable predictions of beta feedback effects.
    Maltenfort MG; Burke RE
    J Neurophysiol; 2003 May; 89(5):2797-809. PubMed ID: 12740414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis.
    Ackland DC; Lin YC; Pandy MG
    J Biomech; 2012 May; 45(8):1463-71. PubMed ID: 22507351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting any arm movement feedback to induce three-dimensional illusory movements in humans.
    Thyrion C; Roll JP
    J Neurophysiol; 2010 Aug; 104(2):949-59. PubMed ID: 20538782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability analysis for postural control in a two-joint limb system.
    Lan N
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):249-59. PubMed ID: 12611363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups.
    Lilly JH; Quesada PM
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):349-59. PubMed ID: 15473198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced modeling environment for developing and testing FES control systems.
    Davoodi R; Brown IE; Loeb GE
    Med Eng Phys; 2003 Jan; 25(1):3-9. PubMed ID: 12485781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computationally efficient models of neuromuscular recruitment and mechanics.
    Song D; Raphael G; Lan N; Loeb GE
    J Neural Eng; 2008 Jun; 5(2):175-84. PubMed ID: 18441419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic simulation of perturbation responses in a closed-loop virtual arm model.
    Du YF; He X; Lan N
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4866-9. PubMed ID: 21096650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb.
    Pennestrì E; Stefanelli R; Valentini PP; Vita L
    J Biomech; 2007; 40(6):1350-61. PubMed ID: 16824531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.