These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18300100)

  • 1. Influence of loading volume of mefenamic acid on granules and tablet characteristics using a compaction simulator.
    Kimura G; Betz G; Leuenberger H
    Pharm Dev Technol; 2008; 13(1):57-64. PubMed ID: 18300100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of loading volume of mefenamic acid on granules and tablet characteristics using a compaction simulator.
    Kimura G; Betz G; Leuenberger H
    Pharm Dev Technol; 2007; 12(6):627-35. PubMed ID: 18161636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of drug load on dissolution behavior of tablets containing a poorly water-soluble drug: estimation of the percolation threshold.
    Wenzel T; Stillhart C; Kleinebudde P; Szepes A
    Drug Dev Ind Pharm; 2017 Aug; 43(8):1265-1275. PubMed ID: 28398095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets.
    ElShaer A; Kaialy W; Akhtar N; Iyire A; Hussain T; Alany R; Mohammed AR
    Eur J Pharm Biopharm; 2015 Oct; 96():272-81. PubMed ID: 26255158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percolation theory and the role of maize starch as a disintegrant for a low water-soluble drug.
    Kimura G; Puchkov M; Betz G; Leuenberger H
    Pharm Dev Technol; 2007; 12(1):11-9. PubMed ID: 17484140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing capping and cracking of mefenamic acid tablets.
    Adam A; Schrimpl L; Schmidt PC
    Drug Dev Ind Pharm; 2000 May; 26(5):489-97. PubMed ID: 10789060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of mefenamic acid sustained release beads based on kappa-carrageenan.
    Ozsoy Y; Bergişadi N
    Boll Chim Farm; 2000; 139(3):120-3. PubMed ID: 10961021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An anti-inflammatory drug (mefenamic acid) incorporated in biodegradable alginate beads: development and optimization of the process using factorial design.
    Sevgi F; Kaynarsoy B; Ertan G
    Pharm Dev Technol; 2008; 13(1):5-13. PubMed ID: 18300095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryomilling-induced solid dispersion of poor glass forming/poorly water-soluble mefenamic acid with polyvinylpyrrolidone K12.
    Kang N; Lee J; Choi JN; Mao C; Lee EH
    Drug Dev Ind Pharm; 2015 Jun; 41(6):978-88. PubMed ID: 24849785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of disintegrants on the properties of multiparticulate tablets comprising starch pellets and excipient granules.
    Mehta S; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2012 Jan; 422(1-2):310-7. PubMed ID: 22101283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.
    Wu SJ; Sun C
    J Pharm Sci; 2007 May; 96(5):1445-50. PubMed ID: 17455348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations on mefenamic acid sustained release tablets with water-insoluble gel.
    Güngör S; Yildiz A; Ozsoy Y; Cevher E; Araman A
    Farmaco; 2003 May; 58(5):397-401. PubMed ID: 12729834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compression characteristics of granulated materials. VII. The effect of intragranular binder distribution on the compatibility of some lactose granulations.
    Wikberg M; Alderborn G
    Pharm Res; 1993 Jan; 10(1):88-94. PubMed ID: 8430065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapidly disintegrating tablets prepared by the wet compression method: mechanism and optimization.
    Bi Y; Yonezawa Y; Sunada H
    J Pharm Sci; 1999 Oct; 88(10):1004-10. PubMed ID: 10514347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational estimation of the optimum amount of non-fibrous disintegrant applying percolation theory for binary fast disintegrating formulation.
    Krausbauer E; Puchkov M; Betz G; Leuenberger H
    J Pharm Sci; 2008 Jan; 97(1):529-41. PubMed ID: 17879295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle size distribution and evolution in tablet structure during and after compaction.
    Fichtner F; Rasmuson A; Alderborn G
    Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic development of a high dosage formulation to enable direct compression of a poorly flowing API: A case study.
    Schaller BE; Moroney KM; Castro-Dominguez B; Cronin P; Belen-Girona J; Ruane P; Croker DM; Walker GM
    Int J Pharm; 2019 Jul; 566():615-630. PubMed ID: 31158454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel tool for the prediction of tablet sticking during high speed compaction.
    Abdel-Hamid S; Betz G
    Pharm Dev Technol; 2012; 17(6):747-54. PubMed ID: 21563986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clarifying the mechanism of aggregation of particles in high-shear granulation based on their surface properties by using micro-spectroscopy.
    Kano T; Yoshihashi Y; Yonemochi E; Terada K
    Int J Pharm; 2014 Jan; 461(1-2):495-504. PubMed ID: 24368102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer and scale-up of the manufacturing of orodispersible mini-tablets from a compaction simulator to an industrial rotary tablet press.
    Lura A; Elezaj V; Kokott M; Fischer B; Breitkreutz J
    Int J Pharm; 2021 Jun; 602():120636. PubMed ID: 33895296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.