BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 18300422)

  • 1. Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity.
    Owens GK
    Novartis Found Symp; 2007; 283():174-91; discussion 191-3, 238-41. PubMed ID: 18300422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular determinants of vascular smooth muscle cell diversity.
    Yoshida T; Owens GK
    Circ Res; 2005 Feb; 96(3):280-91. PubMed ID: 15718508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programming smooth muscle plasticity with chromatin dynamics.
    McDonald OG; Owens GK
    Circ Res; 2007 May; 100(10):1428-41. PubMed ID: 17525382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular regulation of vascular smooth muscle cell differentiation in development and disease.
    Owens GK; Kumar MS; Wamhoff BR
    Physiol Rev; 2004 Jul; 84(3):767-801. PubMed ID: 15269336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H3K4 di-methylation governs smooth muscle lineage identity and promotes vascular homeostasis by restraining plasticity.
    Liu M; Espinosa-Diez C; Mahan S; Du M; Nguyen AT; Hahn S; Chakraborty R; Straub AC; Martin KA; Owens GK; Gomez D
    Dev Cell; 2021 Oct; 56(19):2765-2782.e10. PubMed ID: 34582749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity.
    Liu R; Jin Y; Tang WH; Qin L; Zhang X; Tellides G; Hwa J; Yu J; Martin KA
    Circulation; 2013 Oct; 128(18):2047-57. PubMed ID: 24077167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-cadherin promotes vascular smooth muscle cell dedifferentiation via a GSK3β-inactivation dependent mechanism.
    Frismantiene A; Dasen B; Pfaff D; Erne P; Resink TJ; Philippova M
    Cell Signal; 2016 May; 28(5):516-530. PubMed ID: 26907733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic Control of Smooth Muscle Cell Identity and Lineage Memory.
    Gomez D; Swiatlowska P; Owens GK
    Arterioscler Thromb Vasc Biol; 2015 Dec; 35(12):2508-16. PubMed ID: 26449751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive functional molecular phenotyping of human smooth muscle cells utilized in cardiovascular tissue engineering.
    Marzi J; Brauchle EM; Schenke-Layland K; Rolle MW
    Acta Biomater; 2019 Apr; 89():193-205. PubMed ID: 30878445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth muscle cell phenotypic switching in atherosclerosis.
    Gomez D; Owens GK
    Cardiovasc Res; 2012 Jul; 95(2):156-64. PubMed ID: 22406749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular smooth muscle cell phenotypic plasticity: focus on chromatin remodelling.
    Spin JM; Maegdefessel L; Tsao PS
    Cardiovasc Res; 2012 Jul; 95(2):147-55. PubMed ID: 22362814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced expression of myocardin is not sufficient for induction of smooth muscle differentiation in multipotential embryonic cells.
    Yoshida T; Kawai-Kowase K; Owens GK
    Arterioscler Thromb Vasc Biol; 2004 Sep; 24(9):1596-601. PubMed ID: 15231515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells.
    Kawai-Kowase K; Owens GK
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C59-69. PubMed ID: 16956962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease.
    Alexander MR; Owens GK
    Annu Rev Physiol; 2012; 74():13-40. PubMed ID: 22017177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and differentiation of vascular smooth muscle cells.
    Wang G; Jacquet L; Karamariti E; Xu Q
    J Physiol; 2015 Jul; 593(14):3013-30. PubMed ID: 25952975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro.
    Pidkovka NA; Cherepanova OA; Yoshida T; Alexander MR; Deaton RA; Thomas JA; Leitinger N; Owens GK
    Circ Res; 2007 Oct; 101(8):792-801. PubMed ID: 17704209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and embryonic lineage-dependent regulation of human vascular SMC development by NOTCH3.
    Granata A; Bernard WG; Zhao N; Mccafferty J; Lilly B; Sinha S
    Stem Cells Dev; 2015 Apr; 24(7):846-56. PubMed ID: 25539150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes.
    Yoshida T; Sinha S; Dandré F; Wamhoff BR; Hoofnagle MH; Kremer BE; Wang DZ; Olson EN; Owens GK
    Circ Res; 2003 May; 92(8):856-64. PubMed ID: 12663482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial cell activation of the smooth muscle cell phosphoinositide 3-kinase/Akt pathway promotes differentiation.
    Brown DJ; Rzucidlo EM; Merenick BL; Wagner RJ; Martin KA; Powell RJ
    J Vasc Surg; 2005 Mar; 41(3):509-16. PubMed ID: 15838487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a Klf4-dependent upstream repressor region mediating transcriptional regulation of the myocardin gene in human smooth muscle cells.
    Turner EC; Huang CL; Govindarajan K; Caplice NM
    Biochim Biophys Acta; 2013 Nov; 1829(11):1191-201. PubMed ID: 24060351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.