BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 18301101)

  • 1. Comparison of activation products and induced dose rates in different high-energy medical linear accelerators.
    Fischer HW; Tabot B; Poppe B
    Health Phys; 2008 Mar; 94(3):272-8. PubMed ID: 18301101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of activation products to occupational exposure following treatment using high-energy photons in radiotherapy.
    Petrović N; Krestić-Vesović J; Stojanović D; Ciraj-Bjelac O; Lazarević D; Kovacević M
    Radiat Prot Dosimetry; 2011 Jan; 143(1):109-12. PubMed ID: 20947589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron activation of patients following boron neutron capture therapy of brain tumors at the high flux reactor (HFR) Petten (EORTC Trials 11961 and 11011).
    Wittig A; Moss RL; Stecher-Rasmussen F; Appelman K; Rassow J; Roca A; Sauerwein W
    Strahlenther Onkol; 2005 Dec; 181(12):774-82. PubMed ID: 16362787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Health physics aspects of neutron activated components in a linear accelerator.
    Guo S; Ziemer PL
    Health Phys; 2004 May; 86(5 Suppl):S94-S102. PubMed ID: 15069298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remanent dose rates around the collimators of the LHC beam cleaning insertions.
    Brugger M; Roesler S
    Radiat Prot Dosimetry; 2005; 115(1-4):470-4. PubMed ID: 16381769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Undesirable nuclear reactions and induced radioactivity as a result of the use of the high-energy therapeutic beams generated by medical linacs.
    Konefal A; Polaczek-Grelik K; Zipper W
    Radiat Prot Dosimetry; 2008; 128(2):133-45. PubMed ID: 17569692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced radioactivity in CU targets produced by high-energy heavy ions and the corresponding estimated photon dose rates.
    Yashima H; Uwamino Y; Sugita H; Ito S; Nakamura T; Fukumura A
    Radiat Prot Dosimetry; 2004; 112(2):195-208. PubMed ID: 15280565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation processes in a medical linear accelerator and spatial distribution of activation products.
    Fischer HW; Tabot BE; Poppe B
    Phys Med Biol; 2006 Dec; 51(24):N461-6. PubMed ID: 17148816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Assessment of potential exposure risk for radiotherapy staff working with lineal accelerators].
    Tofani A; Del Corona A; Manetti F
    Radiol Med; 1999 Apr; 97(4):286-95. PubMed ID: 10414263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DOSE AND GAMMA-RAY SPECTRA FROM NEUTRON-INDUCED RADIOACTIVITY IN MEDICAL LINEAR ACCELERATORS FOLLOWING HIGH-ENERGY TOTAL BODY IRRADIATION.
    Keehan S; Taylor ML; Smith RL; Dunn L; Kron T; Franich RD
    Radiat Prot Dosimetry; 2016 Dec; 172(4):327-332. PubMed ID: 26598738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced radioactive nuclides of 10-MeV radiotherapy accelerators detected by using a portable HP-Ge survey meter.
    Fujibuchi T; Obara S; Yamaguchi I; Oyama M; Watanabe H; Sakae T; Katoh K
    Radiat Prot Dosimetry; 2012 Jan; 148(2):168-73. PubMed ID: 21317145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation protection aspects of a 4 MW target.
    Agosteo S; Magistris M; Silari M
    Radiat Prot Dosimetry; 2005; 115(1-4):465-9. PubMed ID: 16381768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of air photoactivation at linear accelerators for radiotherapy.
    Tana L; Ciolini R; Ciuffardi E; Romei C; d'Errico F
    J Radiol Prot; 2015 Jun; 35(2):239-48. PubMed ID: 25760952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Health physics aspects in treatment rooms after 18-MV X-ray irradiations.
    Kalef-Ezra JA
    Radiat Prot Dosimetry; 2011 Sep; 147(1-2):281-6. PubMed ID: 21979431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation protection system at the RIKEN RI beam factory.
    Uwamino Y; Fujita S; Sakamoto H; Ito S; Fukunishi N; Yabutani T; Yamano T; Fukumura A
    Radiat Prot Dosimetry; 2005; 115(1-4):279-83. PubMed ID: 16381729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of different recombination methods in mixed radiation fields at high energy accelerators.
    Zielczynski M; Golnik N; Gryzinski MA
    Radiat Prot Dosimetry; 2007; 126(1-4):248-52. PubMed ID: 17575296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-level dosimetry at the demagnetization experiments of permanent magnets.
    Lee HS; Qiu R; Hong S; Chung CW; Bizen T; Li J
    Radiat Prot Dosimetry; 2007; 126(1-4):288-93. PubMed ID: 17575293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Activation of solid materials in a medical linear electron accelerator].
    Ewen K; Lauber-Altmann I
    Rontgenblatter; 1987 Jun; 40(6):185-90. PubMed ID: 3616427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation impact caused by activation of air from the future GSI accelerator facility fair.
    Gutermuth F; Wildermuth H; Radon T; Fehrenbacher G
    Radiat Prot Dosimetry; 2005; 115(1-4):437-40. PubMed ID: 16381762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of medical personnel to radiation during radionuclide therapy practices.
    Lancelot S; Guillet B; Sigrist S; Bourrelly M; Waultier S; Mundler O; Pisano P
    Nucl Med Commun; 2008 Apr; 29(4):405-10. PubMed ID: 18317307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.