BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 18301287)

  • 21. Assessment of the retinal nerve fiber layer of the normal and glaucomatous monkey with scanning laser polarimetry.
    Weinreb RN; Bowd C; Zangwill LM
    Trans Am Ophthalmol Soc; 2002; 100():161-6; discussion 166-7. PubMed ID: 12545690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Longitudinal measurement variability of corneal birefringence and retinal nerve fiber layer thickness in scanning laser polarimetry with variable corneal compensation.
    Mai TA; Lemij HG
    Arch Ophthalmol; 2008 Oct; 126(10):1359-64. PubMed ID: 18852413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of retinal nerve fiber layer thickness in normal and glaucomatous Cocker Spaniels by scanning laser polarimetry.
    García-Sánchez GA; Gil-Carrasco F; Román JJ; Brooks DE; Alvarez-Clau A; Hosgood G; Iwabe S; Moreno-Mendoza NA
    Vet Ophthalmol; 2007; 10 Suppl 1():78-87. PubMed ID: 17973838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Individualized compensation of anterior segment birefringence during scanning laser polarimetry.
    Zhou Q; Weinreb RN
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2221-8. PubMed ID: 12091420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison.
    Götzinger E; Pircher M; Baumann B; Hirn C; Vass C; Hitzenberger CK
    J Biophotonics; 2008 May; 1(2):129-39. PubMed ID: 19343644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of diabetic retinopathy on quantitative retinal nerve fiber layer measurement and glaucoma screening.
    Takahashi H; Chihara E
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):687-92. PubMed ID: 18235015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of nerve fiber layer thickness before and after laser in situ keratomileusis using scanning laser polarimetry with variable corneal compensation.
    Halkiadakis I; Anglionto L; Ferensowicz M; Triebwasser RW; van Westenbrugge JA; Gimbel HV
    J Cataract Refract Surg; 2005 May; 31(5):1035-41. PubMed ID: 15975475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accuracy of combined GDx-VCC and matrix FDT in a glaucoma screening trial.
    Tóth M; Kóthy P; Vargha P; Holló G
    J Glaucoma; 2007 Aug; 16(5):462-70. PubMed ID: 17700289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atypical retardation pattern in measurements of scanning laser polarimetry and its relating factors.
    Yanagisawa M; Tomidokoro A; Saito H; Mayama C; Aihara M; Tomita G; Shoji N; Araie M
    Eye (Lond); 2009 Sep; 23(9):1796-801. PubMed ID: 19079145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes.
    Bowd C; Zangwill LM; Weinreb RN
    Arch Ophthalmol; 2003 Jul; 121(7):961-6. PubMed ID: 12860798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison between fixed-angle and customised corneal-polarisation compensation methods in scanning laser polarimetric measurement of the retinal nerve fibre layer in glaucoma.
    Katsanos A; Kóthy P; Holló G
    Eye (Lond); 2005 Feb; 19(2):152-8. PubMed ID: 15184959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in scanning laser polarimetry before and after laser capsulotomy for posterior capsular opacification.
    Garcia-Medina JJ; Garcia-Medina M; Pinazo-Duran MD
    J Glaucoma; 2007; 16(7):640; author reply 641. PubMed ID: 18091185
    [No Abstract]   [Full Text] [Related]  

  • 33. Prospective evaluation of factors associated with post-LASIK corneal birefringence with scanning laser polarimetry.
    Shoji T; Takahashi H; Park M; Okazaki K; Tanito M; Chihara E
    J Glaucoma; 2007 Jan; 16(1):137-45. PubMed ID: 17224764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scanning laser polarimetry measurement with variable corneal compensation compared with fixed corneal compensation.
    Goto T; Tanito M; Itai N; Chihara E
    Jpn J Ophthalmol; 2004; 48(5):507-9. PubMed ID: 15486779
    [No Abstract]   [Full Text] [Related]  

  • 35. Error in refractive correction and its impact on scanning laser polarimetry.
    Chen E; Parmér E; Vennström Y
    J Glaucoma; 2007 Mar; 16(2):196-200. PubMed ID: 17473729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scanning laser polarimetry demonstration of retinal nerve fiber layer damage in human immunodeficiency virus-positive patients without infectious retinitis.
    Kozak I; Bartsch DU; Cheng L; McCutchan A; Weinreb RN; Freeman WR
    Retina; 2007; 27(9):1267-73. PubMed ID: 18046236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scanning laser polarimetry with enhanced corneal compensation for detection of axonal loss in band atrophy of the optic nerve.
    Monteiro ML; Moura FC; Medeiros FA
    Am J Ophthalmol; 2008 Apr; 145(4):747-754. PubMed ID: 18241832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scanning laser polarimetry in monkey eyes using variable corneal polarization compensation.
    Weinreb RN; Bowd C; Zangwill LM
    J Glaucoma; 2002 Oct; 11(5):378-84. PubMed ID: 12362075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated detection of wedge-shaped defects in polarimetric images of the retinal nerve fibre layer.
    Vermeer KA; Reus NJ; Vos FM; Vossepoel AM; Lemij HG
    Eye (Lond); 2006 Jul; 20(7):776-84. PubMed ID: 15999123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation between polarimetric retinal nerve fiber layer thickness and retinal sensitivity determined with frequency-doubling technology.
    Katsanos A; Kóthy P; Konstas AG; Vargha P; Holló G
    Ophthalmic Surg Lasers Imaging; 2005; 36(5):394-400. PubMed ID: 16238038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.