These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 18301500)

  • 1. Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption.
    Li X; Chance B; Yodh AG
    Appl Opt; 1998 Oct; 37(28):6833-44. PubMed ID: 18301500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection limit enhancement of fluorescent heterogeneities in turbid media by dual-interfering excitation.
    Intes X; Chen Y; Li X; Chance B
    Appl Opt; 2002 Jul; 41(19):3999-4007. PubMed ID: 12099611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity studies for imaging a spherical object embedded in a spherically symmetric, two-layer turbid medium with photon-density waves.
    Yao Y; Barbour RL; Wang Y; Graber HL; Chang J
    Appl Opt; 1996 Feb; 35(4):735-51. PubMed ID: 21069064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.
    Chen Y; Chen ZP; Yang J; Jin JW; Zhang J; Yu RQ
    Anal Chem; 2013 Feb; 85(4):2015-20. PubMed ID: 23327605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications.
    Li XD; O'Leary MA; Boas DA; Chance B; Yodh AG
    Appl Opt; 1996 Jul; 35(19):3746-58. PubMed ID: 21102772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence /reflectance ratio technique.
    Weersink R; Patterson MS; Diamond K; Silver S; Padgett N
    Appl Opt; 2001 Dec; 40(34):6389-95. PubMed ID: 18364948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration.
    Mayer RH; Reynolds JS; Sevick-Muraca EM
    Appl Opt; 1999 Aug; 38(22):4930-8. PubMed ID: 18323983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source.
    Chen Y; Mu C; Intes X; Chance B
    Opt Express; 2001 Aug; 9(4):212-24. PubMed ID: 19421292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-precision frequency-domain measurements of the optical properties of turbid media.
    Gerken M; Faris GW
    Opt Lett; 1999 Jul; 24(14):930-2. PubMed ID: 18073899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical, experimental, and computational aspects of optical property determination of turbid media by using frequency-domain laser infrared photothermal radiometry.
    Nicolaides L; Chen Y; Mandelis A; Vitkin IA
    J Opt Soc Am A Opt Image Sci Vis; 2001 Oct; 18(10):2548-56. PubMed ID: 11583272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue.
    Hattery D; Chernomordik V; Loew M; Gannot I; Gandjbakhche A
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1523-30. PubMed ID: 11444544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency domain measurements on turbid media with strong absorption using the PN approximation.
    Baltes C; Faris GW
    Appl Opt; 2009 Jun; 48(16):2991-3000. PubMed ID: 19488110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon density waves scattered from cylindrical inhomogeneities: theory and experiments.
    Walker SA; Boas DA; Gratton E
    Appl Opt; 1998 Apr; 37(10):1935-44. PubMed ID: 18273113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals.
    Huynh NT; Ruan H; He D; Hayes-Gill BR; Morgan SP
    J Biomed Opt; 2012 Jul; 17(7):076008. PubMed ID: 22894491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom.
    Fishkin JB; So PT; Cerussi AE; Fantini S; Franceschini MA; Gratton E
    Appl Opt; 1995 Mar; 34(7):1143-55. PubMed ID: 21037643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media.
    Wang L; Zhao X
    Appl Opt; 1997 Oct; 36(28):7277-82. PubMed ID: 18264237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of optical properties on two-photon fluorescence imaging in turbid samples.
    Dunn AK; Wallace VP; Coleno M; Berns MW; Tromberg BJ
    Appl Opt; 2000 Mar; 39(7):1194-201. PubMed ID: 18338003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber.
    Diamond KR; Patterson MS; Farrell TJ
    Appl Opt; 2003 May; 42(13):2436-42. PubMed ID: 12737480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.