These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18301674)

  • 1. Increased efficiency of vacuum ultraviolet generation by stimulated anti-stokes Raman scattering with stokes seeding.
    Goehlich A; Czarnetzki U; Döbele HF
    Appl Opt; 1998 Dec; 37(36):8453-9. PubMed ID: 18301674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental tests of a novel Raman cell for vacuum ultraviolet generation to below Lyman-α.
    Spaan M; Goehlich A; Schulz-von der Gathen V; Döbele HF
    Appl Opt; 1994 Jun; 33(18):3865-70. PubMed ID: 20935728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injection seeding for the enhancement of high-order anti-Stokes stimulated Raman scattering.
    Wada S; Moriwaki H; Nakamura A; Tashiro H
    Opt Lett; 1995 Apr; 20(8):848-50. PubMed ID: 19859350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable, 178-nm iodine anti-Stokes Raman laser.
    White JC; Henderson D
    Opt Lett; 1982 May; 7(5):204-6. PubMed ID: 19710872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuum-ultraviolet anti-Stokes Raman laser with atomic selenium.
    Ludewigt K; Schmidt H; Dierking R; Wellegehausen B
    Opt Lett; 1985 Dec; 10(12):606-8. PubMed ID: 19730500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient stimulated Raman scattering externally seeded by molecular spontaneous emission.
    Gomes AS; Lawandy NM
    Opt Lett; 1994 Mar; 19(6):408-10. PubMed ID: 19829657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient tunable ultraviolet source based on stimulated Raman scattering of an excimer-pumped dye laser.
    Brink DJ; Proch D
    Opt Lett; 1982 Oct; 7(10):494-6. PubMed ID: 19714068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of amplification process on the third Stokes line of H2 under ultraviolet laser irradiation.
    Gondal MA; Dastageer A
    Appl Opt; 2008 Nov; 47(33):6243-50. PubMed ID: 19023390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Photon Ionization Mass Spectrometry Using a Vacuum Ultraviolet Femtosecond Laser.
    Phan TD; Li A; Nakamura H; Imasaka T; Imasaka T
    J Am Soc Mass Spectrom; 2020 Jul; ():. PubMed ID: 32608978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-pulse broadband stimulated Raman scattering in carbon disulfide via resonance cascading.
    Li S; Wang Y; Liu X; Sun C; Fang W; Men Z
    Appl Opt; 2021 Oct; 60(28):8787-8791. PubMed ID: 34613104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system.
    Krauss G; Hanke T; Sell A; Träutlein D; Leitenstorfer A; Selm R; Winterhalder M; Zumbusch A
    Opt Lett; 2009 Sep; 34(18):2847-9. PubMed ID: 19756125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuum-UV radiation at 185 nm in water treatment--a review.
    Zoschke K; Börnick H; Worch E
    Water Res; 2014 Apr; 52():131-45. PubMed ID: 24463177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent Raman comb generation in H
    Ye Y; Wang Y; Fang W; Sun C; Men Z
    Opt Lett; 2022 Jun; 47(11):2610-2613. PubMed ID: 35648886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber.
    Benabid F; Knight JC; Antonopoulos G; Russell PS
    Science; 2002 Oct; 298(5592):399-402. PubMed ID: 12376698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of a vacuum ultraviolet to visible Raman frequency comb in H
    Mridha MK; Novoa D; Bauerschmidt ST; Abdolvand A; St J Russell P
    Opt Lett; 2016 Jun; 41(12):2811-4. PubMed ID: 27304295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-power vacuum-ultraviolet anti-Stokes Raman laser with atomic selenium.
    Ludewigt K; Pfingsten W; Möhlmann C; Wellegehausen B
    Opt Lett; 1987 Jan; 12(1):39-41. PubMed ID: 19738786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracavity pumped parametric Raman nanosecond crystalline anti-Stokes laser at 954 nm with collinear orthogonally polarized beam interaction at tangential phase matching.
    Smetanin SN; Jelínek M; Tereshchenko DP; Kubeček V
    Opt Express; 2018 Sep; 26(18):22637-22649. PubMed ID: 30184921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of 224-nm radiation by stimulated Raman scattering of ArF excimer laser radiation in a mixture of H2 and D2.
    Stoffels GG; Schmidt P; Dam N; ter Meulen JJ
    Appl Opt; 1997 Sep; 36(27):6797-801. PubMed ID: 18259547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-beam double stimulated Raman scatterings: Cascading configuration.
    Rao BJ; Cho M
    J Chem Phys; 2018 Mar; 148(11):114201. PubMed ID: 29566530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of infrared radiation by stimulated Raman scattering in para-hydrogen crystal at 5 K.
    Fushitani M; Kuma S; Miyamoto Y; Katsuki H; Wakabayashi T; Momose T; Vilesov AF
    Opt Lett; 2003 Jan; 28(1):37-9. PubMed ID: 12656528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.