These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 18301757)

  • 41. The implications of (2S,4S)-hydroxyproline 4-O-glycosylation for prolyl amide isomerization.
    Owens NW; Lee A; Marat K; Schweizer F
    Chemistry; 2009 Oct; 15(40):10649-57. PubMed ID: 19739208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acid catalysis of the formation of the slow-folding species of RNase A: evidence that the reaction is proline isomerization.
    Schmid FX; Baldwin RL
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4764-8. PubMed ID: 283390
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proline isomerization is unlikely to be the cause of slow annealing and reactivation during the folding of alkaline phosphatase.
    Dirnbach E; Steel DG; Gafni A
    J Biol Chem; 1999 Feb; 274(8):4532-6. PubMed ID: 9988686
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization.
    Pierce MM; Nall BT
    J Mol Biol; 2000 May; 298(5):955-69. PubMed ID: 10801361
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Local control of peptide conformation: stabilization of cis proline peptide bonds by aromatic proline interactions.
    Wu WJ; Raleigh DP
    Biopolymers; 1998 Apr; 45(5):381-94. PubMed ID: 9530015
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing the thermal stability of a single-chain Fv fragment by in vivo global fluorination of the proline residues.
    Edwardraja S; Sriram S; Govindan R; Budisa N; Lee SG
    Mol Biosyst; 2011 Jan; 7(1):258-65. PubMed ID: 21103487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conformational preference and cis-trans isomerization of 4(R)-substituted proline residues.
    Song IK; Kang YK
    J Phys Chem B; 2006 Feb; 110(4):1915-27. PubMed ID: 16471763
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural insight into proline
    Kawagoe S; Nakagawa H; Kumeta H; Ishimori K; Saio T
    J Biol Chem; 2018 Sep; 293(39):15095-15106. PubMed ID: 30093407
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Puckering transition of 4-substituted proline residues.
    Song IK; Kang YK
    J Phys Chem B; 2005 Sep; 109(35):16982-7. PubMed ID: 16853162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conformations of proline analogues having double bonds in the ring.
    Flores-Ortega A; Casanovas J; Zanuy D; Nussinov R; Alemán C
    J Phys Chem B; 2007 May; 111(19):5475-82. PubMed ID: 17458993
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The rate-limiting step in the folding of the cis-Pro167Thr mutant of TEM-1 beta-lactamase is the trans to cis isomerization of a non-proline peptide bond.
    Vanhove M; Raquet X; Palzkill T; Pain RH; Frère JM
    Proteins; 1996 May; 25(1):104-11. PubMed ID: 8727322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of multiple prolyl isomerization reactions on the stability and folding kinetics of the notch ankyrin domain: experiment and theory.
    Bradley CM; Barrick D
    J Mol Biol; 2005 Sep; 352(2):253-65. PubMed ID: 16054647
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides.
    Kim W; McMillan RA; Snyder JP; Conticello VP
    J Am Chem Soc; 2005 Dec; 127(51):18121-32. PubMed ID: 16366565
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Escherichia coli cyclophilin B binds a highly distorted form of trans-prolyl peptide isomer.
    Konno M; Sano Y; Okudaira K; Kawaguchi Y; Yamagishi-Ohmori Y; Fushinobu S; Matsuzawa H
    Eur J Biochem; 2004 Sep; 271(18):3794-803. PubMed ID: 15355356
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins.
    Guan RJ; Xiang Y; He XL; Wang CG; Wang M; Zhang Y; Sundberg EJ; Wang DC
    J Mol Biol; 2004 Aug; 341(5):1189-204. PubMed ID: 15321715
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Site-specific NMR monitoring of cis-trans isomerization in the folding of the proline-rich collagen triple helix.
    Buevich AV; Dai QH; Liu X; Brodsky B; Baum J
    Biochemistry; 2000 Apr; 39(15):4299-308. PubMed ID: 10757978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Folding and unfolding kinetics of the proline-to-alanine mutants of bovine pancreatic ribonuclease A.
    Dodge RW; Scheraga HA
    Biochemistry; 1996 Feb; 35(5):1548-59. PubMed ID: 8634286
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Consequences of proline-to-alanine substitutions for the stability and refolding of onconase.
    Hacke M; Gruber T; Schulenburg C; Balbach J; Arnold U
    FEBS J; 2013 Sep; 280(18):4454-62. PubMed ID: 23796075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of i and i+3 residue identity on cis-trans isomerism of the aromatic(i+1)-prolyl(i+2) amide bond: implications for type VI beta-turn formation.
    Meng HY; Thomas KM; Lee AE; Zondlo NJ
    Biopolymers; 2006; 84(2):192-204. PubMed ID: 16208767
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 4-Fluoroprolines: Conformational Analysis and Effects on the Stability and Folding of Peptides and Proteins.
    Newberry RW; Raines RT
    Top Heterocycl Chem; 2017; 48():1-25. PubMed ID: 28690684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.