These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18301936)

  • 1. Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model.
    Zhang JM; Chua LP; Ghista DN; Yu SC; Tan YS
    Med Biol Eng Comput; 2008 Jul; 46(7):689-99. PubMed ID: 18301936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
    Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of numerical simulation with PIV measurements for two anastomosis models.
    Zhang JM; Chua LP; Ghista DN; Zhou TM; Tan YS
    Med Eng Phys; 2008 Mar; 30(2):226-47. PubMed ID: 17466565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Computational Fluid Dynamics and Particle Image Velocimetry Models of Distal-End Side-to-Side and End-to-Side Anastomoses for Coronary Artery Bypass Grafting in a Pulsatile Flow.
    Shintani Y; Iino K; Yamamoto Y; Kato H; Takemura H; Kiwata T
    Circ J; 2017 Dec; 82(1):110-117. PubMed ID: 28824030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel coronary artery bypass graft design of sequential anastomoses.
    Kabinejadian F; Chua LP; Ghista DN; Sankaranarayanan M; Tan YS
    Ann Biomed Eng; 2010 Oct; 38(10):3135-50. PubMed ID: 20496004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study.
    Kute SM; Vorp DA
    J Biomech Eng; 2001 Jun; 123(3):277-83. PubMed ID: 11476372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts.
    Frauenfelder T; Boutsianis E; Schertler T; Husmann L; Leschka S; Poulikakos D; Marincek B; Alkadhi H
    Biomed Eng Online; 2007 Sep; 6():35. PubMed ID: 17897460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS:DOS flow ratios.
    Li XM; Rittgers SE
    J Biomech Eng; 2001 Jun; 123(3):270-6. PubMed ID: 11476371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study.
    Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE
    J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ratio of diameters between the target artery and the bypass modifies hemodynamic parameters related to intimal hyperplasia in the distal end-to-side anastomosis.
    Grus T; Lambert L; Matěcha J; Grusová G; Špaček M; Mlček M
    Physiol Res; 2016 Dec; 65(6):901-908. PubMed ID: 27539100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2017; 45(1-6):319-382. PubMed ID: 29953383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro measurements of velocity and wall shear stress in a novel sequential anastomotic graft design model under pulsatile flow conditions.
    Kabinejadian F; Ghista DN; Su B; Nezhadian MK; Chua LP; Yeo JH; Leo HL
    Med Eng Phys; 2014 Oct; 36(10):1233-45. PubMed ID: 25103345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses.
    Longest PW; Kleinstreuer C
    J Biomech Eng; 2003 Oct; 125(5):671-81. PubMed ID: 14618926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.
    Xiong FL; Chong CK
    J Biomech; 2007; 40(13):2872-81. PubMed ID: 17466995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational fluid dynamics study on hemodynamics for different locations of the distal anastomosis of a bypass nearby a collateral vessel in the femoropopliteal area.
    Rivera J; van der Graaf GB; Escudero JR; Bellmunt S; van de Vosse F
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1263-77. PubMed ID: 24916477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of top end anastomosis design on patency and flow stability in coronary artery bypass grafting.
    Koyama S; Kitamura T; Itatani K; Yamamoto T; Miyazaki S; Oka N; Nakashima K; Horai T; Ono M; Miyaji K
    Heart Vessels; 2016 May; 31(5):643-8. PubMed ID: 25910614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.