These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 18302160)
1. Evaluation of human mesenchymal stem cells response to biomimetic bioglass-collagen-hyaluronic acid-phosphatidylserine composite scaffolds for bone tissue engineering. Xu C; Wang Y; Yu X; Chen X; Li X; Yang X; Li S; Zhang X; Xiang AP J Biomed Mater Res A; 2009 Jan; 88(1):264-73. PubMed ID: 18302160 [TBL] [Abstract][Full Text] [Related]
2. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051 [TBL] [Abstract][Full Text] [Related]
3. [The preparation of bioglass/collagen/phosphoserine biomemetic composite scaffold and a study on its cytocompatibility]. Chen X; Li X; Wang Y; Yang C; Zhao N Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1112-5. PubMed ID: 19024457 [TBL] [Abstract][Full Text] [Related]
4. A novel biomimetic composite scaffold hybridized with mesenchymal stem cells in repair of rat bone defects models. Xu C; Su P; Wang Y; Chen X; Meng Y; Liu C; Yu X; Yang X; Yu W; Zhang X; Xiang AP J Biomed Mater Res A; 2010 Nov; 95(2):495-503. PubMed ID: 20665678 [TBL] [Abstract][Full Text] [Related]
5. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Zhou J; Xu C; Wu G; Cao X; Zhang L; Zhai Z; Zheng Z; Chen X; Wang Y Acta Biomater; 2011 Nov; 7(11):3999-4006. PubMed ID: 21757035 [TBL] [Abstract][Full Text] [Related]
6. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Meinel L; Karageorgiou V; Hofmann S; Fajardo R; Snyder B; Li C; Zichner L; Langer R; Vunjak-Novakovic G; Kaplan DL J Biomed Mater Res A; 2004 Oct; 71(1):25-34. PubMed ID: 15316936 [TBL] [Abstract][Full Text] [Related]
7. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related]
8. Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells. Liu G; Shu C; Cui L; Liu W; Cao Y Cryobiology; 2008 Jun; 56(3):209-15. PubMed ID: 18430412 [TBL] [Abstract][Full Text] [Related]
9. Responses of mesenchymal stem cell to chitosan-coralline composites microstructured using coralline as gas forming agent. Gravel M; Gross T; Vago R; Tabrizian M Biomaterials; 2006 Mar; 27(9):1899-906. PubMed ID: 16293302 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic scaffolds fabricated from apatite-coated polymer microspheres. Davis HE; Rao RR; He J; Leach JK J Biomed Mater Res A; 2009 Sep; 90(4):1021-31. PubMed ID: 18655148 [TBL] [Abstract][Full Text] [Related]
11. Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development. Zhao F; Grayson WL; Ma T; Bunnell B; Lu WW Biomaterials; 2006 Mar; 27(9):1859-67. PubMed ID: 16225916 [TBL] [Abstract][Full Text] [Related]
12. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Mandal BB; Kundu SC Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621 [TBL] [Abstract][Full Text] [Related]
13. A novel tripolymer coating demonstrating the synergistic effect of chitosan, collagen type 1 and hyaluronic acid on osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Mathews S; Bhonde R; Gupta PK; Totey S Biochem Biophys Res Commun; 2011 Oct; 414(1):270-6. PubMed ID: 21951845 [TBL] [Abstract][Full Text] [Related]
15. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. Siddappa R; Licht R; van Blitterswijk C; de Boer J J Orthop Res; 2007 Aug; 25(8):1029-41. PubMed ID: 17469183 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250 [TBL] [Abstract][Full Text] [Related]
17. Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers. Rim NG; Lee JH; Jeong SI; Lee BK; Kim CH; Shin H Macromol Biosci; 2009 Aug; 9(8):795-804. PubMed ID: 19434677 [TBL] [Abstract][Full Text] [Related]
18. The cultivation of human multipotent mesenchymal stromal cells in clinical grade medium for bone tissue engineering. Pytlík R; Stehlík D; Soukup T; Kalbácová M; Rypácek F; Trc T; Mulinková K; Michnová P; Kideryová L; Zivný J; Klener P; Veselá R; Trnený M; Klener P Biomaterials; 2009 Jul; 30(20):3415-27. PubMed ID: 19362364 [TBL] [Abstract][Full Text] [Related]
19. Mesenchymal stem cell-seeded collagen matrices for bone repair: effects of cyclic tensile strain, cell density, and media conditions on matrix contraction in vitro. Sumanasinghe RD; Osborne JA; Loboa EG J Biomed Mater Res A; 2009 Mar; 88(3):778-86. PubMed ID: 18357565 [TBL] [Abstract][Full Text] [Related]
20. In vitro osteogenic potential of human bone marrow stromal cells cultivated in porous scaffolds from mineralized collagen. Bernhardt A; Lode A; Mietrach C; Hempel U; Hanke T; Gelinsky M J Biomed Mater Res A; 2009 Sep; 90(3):852-62. PubMed ID: 18615470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]