BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18302219)

  • 1. Longitudinal analysis of androgen deprivation of prostate cancer cells identifies pathways to androgen independence.
    D'Antonio JM; Ma C; Monzon FA; Pflug BR
    Prostate; 2008 May; 68(7):698-714. PubMed ID: 18302219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fascin-1 expression is associated with neuroendocrine prostate cancer and directly suppressed by androgen receptor.
    Turpin A; Delliaux C; Parent P; Chevalier H; Escudero-Iriarte C; Bonardi F; Vanpouille N; Flourens A; Querol J; Carnot A; Leroy X; Herranz N; Lanel T; Villers A; Olivier J; Touzet H; de Launoit Y; Tian TV; Duterque-Coquillaud M
    Br J Cancer; 2023 Dec; 129(12):1903-1914. PubMed ID: 37875732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance.
    Holzbeierlein J; Lal P; LaTulippe E; Smith A; Satagopan J; Zhang L; Ryan C; Smith S; Scher H; Scardino P; Reuter V; Gerald WL
    Am J Pathol; 2004 Jan; 164(1):217-27. PubMed ID: 14695335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MED19 encodes two unique protein isoforms that confer prostate cancer growth under low androgen through distinct gene expression programs.
    Ruoff R; Weber H; Wang Y; Huang H; Shapiro E; Fenyö D; Garabedian MJ
    Sci Rep; 2023 Oct; 13(1):18227. PubMed ID: 37880276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TRIM36, a novel androgen-responsive gene, enhances anti-androgen efficacy against prostate cancer by inhibiting MAPK/ERK signaling pathways.
    Liang C; Wang S; Qin C; Bao M; Cheng G; Liu B; Shao P; Lv Q; Song N; Hua L; Gu M; Li J; Wang Z
    Cell Death Dis; 2018 Feb; 9(2):155. PubMed ID: 29449534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hormone-DNA repair circuit governs the response to genotoxic insult.
    Goodwin JF; Schiewer MJ; Dean JL; Schrecengost RS; de Leeuw R; Han S; Ma T; Den RB; Dicker AP; Feng FY; Knudsen KE
    Cancer Discov; 2013 Nov; 3(11):1254-71. PubMed ID: 24027197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lentiviral vector-mediated insertional mutagenesis screen identifies genes that influence androgen independent prostate cancer progression and predict clinical outcome.
    Nalla AK; Williams TF; Collins CP; Rae DT; Trobridge GD
    Mol Carcinog; 2016 Nov; 55(11):1761-1771. PubMed ID: 26512949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TCTP is an androgen-regulated gene implicated in prostate cancer.
    Kaarbø M; Storm ML; Qu S; Wæhre H; Risberg B; Danielsen HE; Saatcioglu F
    PLoS One; 2013; 8(7):e69398. PubMed ID: 23894469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated phospholipase D activity in androgen-insensitive prostate cancer cells promotes both survival and metastatic phenotypes.
    Utter M; Chakraborty S; Goren L; Feuser L; Zhu YS; Foster DA
    Cancer Lett; 2018 Jun; 423():28-35. PubMed ID: 29524555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of PDE4D7 expression promotes androgen independence, neuroendocrine differentiation and alterations in DNA repair: implications for therapeutic strategies.
    Gulliver C; Huss S; Semjonow A; Baillie GS; Hoffmann R
    Br J Cancer; 2023 Oct; 129(9):1462-1476. PubMed ID: 37740039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic variation: effect on prostate cancer.
    Sissung TM; Price DK; Del Re M; Ley AM; Giovannetti E; Figg WD; Danesi R
    Biochim Biophys Acta; 2014 Dec; 1846(2):446-56. PubMed ID: 25199985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic interplay between sortilin and syndecan-1 contributes to prostate cancer progression.
    Lazniewska J; Li KL; Johnson IRD; Sorvina A; Logan JM; Martini C; Moore C; Ung BS; Karageorgos L; Hickey SM; Prabhakaran S; Heatlie JK; Brooks RD; Huzzell C; Warnock NI; Ward MP; Mohammed B; Tewari P; Martin C; O'Toole S; Edgerton LB; Bates M; Moretti P; Pitson SM; Selemidis S; Butler LM; O'Leary JJ; Brooks DA
    Sci Rep; 2023 Aug; 13(1):13489. PubMed ID: 37596305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational and clinical implications of the genetic landscape of prostate cancer.
    Spratt DE; Zumsteg ZS; Feng FY; Tomlins SA
    Nat Rev Clin Oncol; 2016 Oct; 13(10):597-610. PubMed ID: 27245282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity.
    Jolly MK; Kulkarni P; Weninger K; Orban J; Levine H
    Front Oncol; 2018; 8():50. PubMed ID: 29560343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroendocrine differentiation in the progression of prostate cancer.
    Komiya A; Suzuki H; Imamoto T; Kamiya N; Nihei N; Naya Y; Ichikawa T; Fuse H
    Int J Urol; 2009 Jan; 16(1):37-44. PubMed ID: 19120524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SETD7 functions as a transcription repressor in prostate cancer via methylating FOXA1.
    Wang Z; Petricca J; Liu M; Zhang S; Chen S; Li M; Besschetnova A; Patalano S; Venkataramani K; Siegfried KR; Macoska JA; Han D; Gao S; Vedadi M; Arrowsmith CH; He HH; Cai C
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2220472120. PubMed ID: 37549269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous action and cooperativity between the ONECUT2 transcription factor and its 3' untranslated region.
    Steadman K; You S; Srinivas DV; Mouakkad L; Yan Y; Kim M; Venugopal SV; Tanaka H; Freeman MR
    Front Cell Dev Biol; 2023; 11():1206259. PubMed ID: 37484909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jumonji domain-containing protein RIOX2 is overexpressed and associated with worse survival outcomes in prostate cancers.
    He C; Liu W; Sun J; Zhang D; Li B
    Front Oncol; 2023; 13():1087082. PubMed ID: 36776320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic Functions of Androgen Receptor and NF-κB in Prostate Cancer-Experimental and Computational Analyses.
    Basílio J; Hochreiter B; Hoesel B; Sheshori E; Mussbacher M; Hanel R; Schmid JA
    Cancers (Basel); 2022 Dec; 14(24):. PubMed ID: 36551650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TMEM158 expression is negatively regulated by AR signaling and associated with favorite survival outcomes in prostate cancers.
    Huang J; Liu W; Zhang D; Lin B; Li B
    Front Oncol; 2022; 12():1023455. PubMed ID: 36387246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.