These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 18302316)
1. Venomics: unravelling the complexity of animal venoms with mass spectrometry. Escoubas P; Quinton L; Nicholson GM J Mass Spectrom; 2008 Mar; 43(3):279-95. PubMed ID: 18302316 [TBL] [Abstract][Full Text] [Related]
2. Proteome and peptidome profiling of spider venoms. Liang S Expert Rev Proteomics; 2008 Oct; 5(5):731-46. PubMed ID: 18937563 [TBL] [Abstract][Full Text] [Related]
3. Mass spectrometry strategies for venom mapping and peptide sequencing from crude venoms: case applications with single arthropod specimen. Favreau P; Menin L; Michalet S; Perret F; Cheneval O; Stöcklin M; Bulet P; Stöcklin R Toxicon; 2006 May; 47(6):676-87. PubMed ID: 16626777 [TBL] [Abstract][Full Text] [Related]
4. Mass spectrometry in toxinology: a 21st-century technology for the study of biopolymers from venoms. Escoubas P Toxicon; 2006 May; 47(6):609-13. PubMed ID: 16529785 [TBL] [Abstract][Full Text] [Related]
5. Snake venomics. Strategy and applications. Calvete JJ; Juárez P; Sanz L J Mass Spectrom; 2007 Nov; 42(11):1405-14. PubMed ID: 17621391 [TBL] [Abstract][Full Text] [Related]
6. Protocols for peptidomic analysis of spider venoms. Songping L Methods Mol Biol; 2010; 615():75-85. PubMed ID: 20013201 [TBL] [Abstract][Full Text] [Related]
7. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Fox JW; Ma L; Nelson K; Sherman NE; Serrano SM Toxicon; 2006 May; 47(6):700-14. PubMed ID: 16574175 [TBL] [Abstract][Full Text] [Related]
8. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136 [TBL] [Abstract][Full Text] [Related]
9. Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Escoubas P; Sollod B; King GF Toxicon; 2006 May; 47(6):650-63. PubMed ID: 16574177 [TBL] [Abstract][Full Text] [Related]
10. A comparison of matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography electrospray ionization mass spectrometry methods for the analysis of crude tarantula venoms in the Pterinochilus group. Escoubas P; Chamot-Rooke J; Stöcklin R; Whiteley BJ; Corzo G; Genet R; Nakajima T Rapid Commun Mass Spectrom; 1999; 13(18):1861-8. PubMed ID: 10482901 [TBL] [Abstract][Full Text] [Related]
11. Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. Yuan C; Jin Q; Tang X; Hu W; Cao R; Yang S; Xiong J; Xie C; Xie J; Liang S J Proteome Res; 2007 Jul; 6(7):2792-801. PubMed ID: 17567163 [TBL] [Abstract][Full Text] [Related]
12. Molecular diversification of peptide toxins from the tarantula Haplopelma hainanum (Ornithoctonus hainana) venom based on transcriptomic, peptidomic, and genomic analyses. Tang X; Zhang Y; Hu W; Xu D; Tao H; Yang X; Li Y; Jiang L; Liang S J Proteome Res; 2010 May; 9(5):2550-64. PubMed ID: 20192277 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Fry BG; Wüster W; Ryan Ramjan SF; Jackson T; Martelli P; Kini RM Rapid Commun Mass Spectrom; 2003; 17(18):2047-62. PubMed ID: 12955733 [TBL] [Abstract][Full Text] [Related]
14. Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa. Calvete JJ; Escolano J; Sanz L J Proteome Res; 2007 Jul; 6(7):2732-45. PubMed ID: 17559253 [TBL] [Abstract][Full Text] [Related]
15. Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC-MALDI-TOF mass spectrometry. Palagi A; Koh JM; Leblanc M; Wilson D; Dutertre S; King GF; Nicholson GM; Escoubas P J Proteomics; 2013 Mar; 80():292-310. PubMed ID: 23352897 [TBL] [Abstract][Full Text] [Related]
16. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and high-performance liquid chromatography study of quantitative and qualitative variation in tarantula spider venoms. Escoubas P; Corzo G; Whiteley BJ; Célérier ML; Nakajima T Rapid Commun Mass Spectrom; 2002; 16(5):403-13. PubMed ID: 11857724 [TBL] [Abstract][Full Text] [Related]
18. Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Liao Z; Cao J; Li S; Yan X; Hu W; He Q; Chen J; Tang J; Xie J; Liang S Proteomics; 2007 Jun; 7(11):1892-907. PubMed ID: 17476710 [TBL] [Abstract][Full Text] [Related]
19. Advances in venomics: Modern separation techniques and mass spectrometry. Abd El-Aziz TM; Soares AG; Stockand JD J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Dec; 1160():122352. PubMed ID: 32971366 [TBL] [Abstract][Full Text] [Related]
20. A geometric approach for the alignment of liquid chromatography-mass spectrometry data. Lange E; Gröpl C; Schulz-Trieglaff O; Leinenbach A; Huber C; Reinert K Bioinformatics; 2007 Jul; 23(13):i273-81. PubMed ID: 17646306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]