These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18302325)

  • 41. Transport properties of RuV-based half-Heusler semiconductors for thermoelectric applications: a computational study.
    Enamullah ; Sharma SK; Ahmed SS
    J Phys Condens Matter; 2020 May; 32(40):405501. PubMed ID: 32460251
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Remarkably High Thermoelectric Efficiencies of the Half-Heusler Compounds BXGa (X = Be, Mg, and Ca).
    Sun HL; Yang CL; Wang MS; Ma XG
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5838-5846. PubMed ID: 31922710
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ZnO/Silicon-Rich Oxide Superlattices with High Thermoelectric Figure of Merit: A Comprehensive Study by Experiment and Molecular Dynamic Simulation.
    Wu HT; Su YC; Pao CW; Shih CF
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13507-13513. PubMed ID: 30859803
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations.
    Zhou F; Szczech J; Pettes MT; Moore AL; Jin S; Shi L
    Nano Lett; 2007 Jun; 7(6):1649-54. PubMed ID: 17508772
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ab initio studies of the optoelectronic structure of undoped and doped silicon nanocrystals and nanowires: the role of size, passivation, symmetry and phase.
    Ossicini S; Marri I; Amato M; Palummo M; Canadell E; Rurali R
    Faraday Discuss; 2020 Jun; 222(0):217-239. PubMed ID: 32108213
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intrinsically high thermoelectric figure of merit of half-Heusler ZrRuTe.
    Keshri SP; Medhi A
    J Phys Condens Matter; 2020 Jul; 32(42):. PubMed ID: 32544886
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermoelectrical properties of silicon substrates with nanopores synthesized by metal-assisted chemical etching.
    Li Y; Toan NV; Wang Z; Samat KF; Ono T
    Nanotechnology; 2020 Nov; 31(45):455705. PubMed ID: 32365347
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of Nanoprecipitates in a Na-Doped PbTe-SrTe Thermoelectric Material with a High Figure of Merit.
    Kim YJ; Zhao LD; Kanatzidis MG; Seidman DN
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21791-21797. PubMed ID: 28590114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties.
    Claudio T; Stein N; Stroppa DG; Klobes B; Koza MM; Kudejova P; Petermann N; Wiggers H; Schierning G; Hermann RP
    Phys Chem Chem Phys; 2014 Dec; 16(47):25701-9. PubMed ID: 24848359
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High thermoelectric figure of merit and thermopower of HfTe
    Jia K; Yang CL; Wang MS; Ma XG
    J Phys Condens Matter; 2020 May; 32(34):. PubMed ID: 32252030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electronic, optical and thermoelectric properties of boron-doped nitrogenated holey graphene.
    Tromer RM; Freitas A; Felix IM; Mortazavi B; Machado LD; Azevedo S; Pereira LFC
    Phys Chem Chem Phys; 2020 Sep; 22(37):21147-21157. PubMed ID: 32926043
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Size- effect induced high thermoelectric figure of merit in PbSe and PbTe nanowires.
    Wrasse EO; Torres A; Baierle RJ; Fazzio A; Schmidt TM
    Phys Chem Chem Phys; 2014 May; 16(17):8114-8. PubMed ID: 24654001
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tin Acceptor Doping Enhanced Thermoelectric Performance of n-Type Yb Single-Filled Skutterudites via Reduced Electronic Thermal Conductivity.
    Qin D; Cui B; Yin L; Zhao X; Zhang Q; Cao J; Cai W; Sui J
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25133-25139. PubMed ID: 31268650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S; Li L; Guy OJ; Zhang Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermoelectric efficiency of organometallic complex wires via quantum resonance effect and long-range electric transport property.
    Nakamura H; Ohto T; Ishida T; Asai Y
    J Am Chem Soc; 2013 Nov; 135(44):16545-52. PubMed ID: 24102142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Composition modulation of Ag2Te nanowires for tunable electrical and thermal properties.
    Yang H; Bahk JH; Day T; Mohammed AM; Min B; Snyder GJ; Shakouri A; Wu Y
    Nano Lett; 2014 Sep; 14(9):5398-404. PubMed ID: 25157694
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of alloying on thermal conductivity and thermoelectric properties of CoAsS and CoSbS.
    Kaur P; Bera C
    Phys Chem Chem Phys; 2017 Sep; 19(36):24928-24933. PubMed ID: 28872649
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ZnTe Alloying Effect on Enhanced Thermoelectric Properties of p-Type PbTe.
    Ahn K; Shin H; Im J; Park SH; Chung I
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3766-3773. PubMed ID: 28051844
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theory of thermoelectricity in Mg
    Farris R; Maccioni MB; Filippetti A; Fiorentini V
    J Phys Condens Matter; 2019 Feb; 31(6):065702. PubMed ID: 30524117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electronic properties of pristine and Se doped [001] silicon nanowires: an ab initio study.
    Petretto G; Debernardi A; Fanciulli M
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8704-9. PubMed ID: 23421270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.