These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange. Chen CY; Tu TY; Jong DS; Wo AM Biotechnol Bioeng; 2011 Jun; 108(6):1395-403. PubMed ID: 21328315 [TBL] [Abstract][Full Text] [Related]
7. Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B. Samy R; Glawdel T; Ren CL Anal Chem; 2008 Jan; 80(2):369-75. PubMed ID: 18081260 [TBL] [Abstract][Full Text] [Related]
8. Simply and reliably integrating micro heaters/sensors in a monolithic PCR-CE microfluidic genetic analysis system. Zhong R; Pan X; Jiang L; Dai Z; Qin J; Lin B Electrophoresis; 2009 Apr; 30(8):1297-305. PubMed ID: 19319907 [TBL] [Abstract][Full Text] [Related]
9. Review of cell and particle trapping in microfluidic systems. Nilsson J; Evander M; Hammarström B; Laurell T Anal Chim Acta; 2009 Sep; 649(2):141-57. PubMed ID: 19699390 [TBL] [Abstract][Full Text] [Related]
10. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip. Gui L; Ren CL Anal Chem; 2006 Sep; 78(17):6215-22. PubMed ID: 16944904 [TBL] [Abstract][Full Text] [Related]
11. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips. Gui L; Ren CL Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592 [TBL] [Abstract][Full Text] [Related]
12. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. Dittert I; Benedikt J; Vyklický L; Zimmermann K; Reeh PW; Vlachová V J Neurosci Methods; 2006 Mar; 151(2):178-85. PubMed ID: 16129494 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices. Chun MS; Shim MS; Choi NW Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042 [TBL] [Abstract][Full Text] [Related]
14. Real time PCR on disposable PDMS chip with a miniaturized thermal cycler. Xiang Q; Xu B; Fu R; Li D Biomed Microdevices; 2005 Dec; 7(4):273-9. PubMed ID: 16404505 [TBL] [Abstract][Full Text] [Related]
17. Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements. Shen CH; Gau C Biosens Bioelectron; 2004 Jul; 20(1):103-14. PubMed ID: 15142582 [TBL] [Abstract][Full Text] [Related]
18. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices. Nock V; Blaikie RJ; David T Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072 [TBL] [Abstract][Full Text] [Related]
19. High flow rate microfluidic device for blood plasma separation using a range of temperatures. Rodríguez-Villarreal AI; Arundell M; Carmona M; Samitier J Lab Chip; 2010 Jan; 10(2):211-9. PubMed ID: 20066249 [TBL] [Abstract][Full Text] [Related]
20. A microfluidic chip for axonal isolation and electrophysiological measurements. Jokinen V; Sakha P; Suvanto P; Rivera C; Franssila S; Lauri SE; Huttunen HJ J Neurosci Methods; 2013 Jan; 212(2):276-82. PubMed ID: 23124090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]