BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 18302369)

  • 1. Relationship between the excited state relaxation paths of rhodopsin and isorhodopsin.
    Strambi A; Coto PB; Frutos LM; Ferré N; Olivucci M
    J Am Chem Soc; 2008 Mar; 130(11):3382-8. PubMed ID: 18302369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QM/MM trajectory surface hopping approach to photoisomerization of rhodopsin and isorhodopsin: the origin of faster and more efficient isomerization for rhodopsin.
    Chung WC; Nanbu S; Ishida T
    J Phys Chem B; 2012 Jul; 116(28):8009-23. PubMed ID: 22783826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal.
    Chung WC; Nanbu S; Ishida T
    J Phys Chem A; 2010 Aug; 114(32):8190-201. PubMed ID: 20666503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level.
    Andruniów T; Ferré N; Olivucci M
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17908-13. PubMed ID: 15604139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between photoisomerization path and intersection space in a retinal chromophore model.
    Migani A; Robb MA; Olivucci M
    J Am Chem Soc; 2003 Mar; 125(9):2804-8. PubMed ID: 12603170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavepacket splitting and two-pathway deactivation in the photoexcited visual pigment isorhodopsin.
    Polli D; Weingart O; Brida D; Poli E; Maiuri M; Spillane KM; Bottoni A; Kukura P; Mathies RA; Cerullo G; Garavelli M
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2504-7. PubMed ID: 24481600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects.
    Schapiro I; Ryazantsev MN; Frutos LM; Ferré N; Lindh R; Olivucci M
    J Am Chem Soc; 2011 Mar; 133(10):3354-64. PubMed ID: 21341699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemistry of visual pigment chromophore models by ab initio molecular dynamics.
    Weingart O; Schapiro I; Buss V
    J Phys Chem B; 2007 Apr; 111(14):3782-8. PubMed ID: 17388554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited-state singlet manifold and oscillatory features of a nonatetraeniminium retinal chromophore model.
    Cembran A; Bernardi F; Olivucci M; Garavelli M
    J Am Chem Soc; 2003 Oct; 125(41):12509-19. PubMed ID: 14531695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoisomerization mechanism of 11-cis-locked artificial retinal chromophores: acceleration and primary photoproduct assignment.
    De Vico L; Garavelli M; Bernardi F; Olivucci M
    J Am Chem Soc; 2005 Mar; 127(8):2433-42. PubMed ID: 15724998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isomerization and electronic relaxation of azobenzene after being excited to higher electronic states.
    Wang L; Xu W; Yi C; Wang X
    J Mol Graph Model; 2009 Apr; 27(7):792-6. PubMed ID: 19128994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonadiabatic ab initio dynamics of two models of Schiff base retinal.
    Ishida T; Nanbu S; Nakamura H
    J Phys Chem A; 2009 Apr; 113(16):4356-66. PubMed ID: 19298071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin.
    Kochendoerfer GG; Verdegem PJ; van der Hoef I; Lugtenburg J; Mathies RA
    Biochemistry; 1996 Dec; 35(50):16230-40. PubMed ID: 8973196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the beta-ionone ring in the photochemical reaction of rhodopsin.
    Send R; Sundholm D
    J Phys Chem A; 2007 Jan; 111(1):27-33. PubMed ID: 17201384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modified approach to the measurement problem: objective reduction in the retinal molecule prior to conformational change.
    Thaheld FH
    Biosystems; 2008 May; 92(2):114-6. PubMed ID: 18308463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory.
    Ferré N; Olivucci M
    J Am Chem Soc; 2003 Jun; 125(23):6868-9. PubMed ID: 12783530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of retinal polyene (de)methylation on the photoisomerization mechanism and photon energy storage of rhodopsin.
    Walczak E; Andruniów T
    Phys Chem Chem Phys; 2015 Jul; 17(26):17169-81. PubMed ID: 26074351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benign decay vs. photolysis in the photophysics and photochemistry of 5-bromouracil. A computational study.
    Kobyłecka M; Migani A; Asturiol D; Rak J; Blancafort L
    J Phys Chem A; 2009 May; 113(19):5489-95. PubMed ID: 19374393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conical intersections in thymine.
    Perun S; Sobolewski AL; Domcke W
    J Phys Chem A; 2006 Dec; 110(49):13238-44. PubMed ID: 17149840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.