These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 18302933)
1. Modelling of full-length human alpha4beta2 nicotinic receptor by fragmental approach and analysis of its binding modes. Pedretti A; Marconi C; Bolchi C; Fumagalli L; Ferrara R; Pallavicini M; Valoti E; Vistoli G Biochem Biophys Res Commun; 2008 May; 369(2):648-53. PubMed ID: 18302933 [TBL] [Abstract][Full Text] [Related]
2. Fragmental modeling of human glutamate transporter EAAT1 and analysis of its binding modes by docking and pharmacophore mapping. Pedretti A; De Luca L; Sciarrillo C; Vistoli G ChemMedChem; 2008 Jan; 3(1):79-90. PubMed ID: 17990250 [TBL] [Abstract][Full Text] [Related]
3. Construction of human ghrelin receptor (hGHS-R1a) model using a fragmental prediction approach and validation through docking analysis. Pedretti A; Villa M; Pallavicini M; Valoti E; Vistoli G J Med Chem; 2006 Jun; 49(11):3077-85. PubMed ID: 16722627 [TBL] [Abstract][Full Text] [Related]
4. Computational evidence for the ligand selectivity to the alpha4beta2 and alpha3beta4 nicotinic acetylcholine receptors. Yuan H; Petukhov PA Bioorg Med Chem; 2006 Dec; 14(23):7936-42. PubMed ID: 16919961 [TBL] [Abstract][Full Text] [Related]
5. Insights into docking and scoring neuronal alpha4beta2 nicotinic receptor agonists using molecular dynamics simulations and QM/MM calculations. Sgrignani J; Bonaccini C; Grazioso G; Chioccioli M; Cavalli A; Gratteri P J Comput Chem; 2009 Nov; 30(15):2443-54. PubMed ID: 19360794 [TBL] [Abstract][Full Text] [Related]
6. Docking analyses on human muscarinic receptors: unveiling the subtypes peculiarities in agonists binding. Vistoli G; Pedretti A; Dei S; Scapecchi S; Marconi C; Romanelli MN Bioorg Med Chem; 2008 Mar; 16(6):3049-58. PubMed ID: 18182302 [TBL] [Abstract][Full Text] [Related]
7. Modeling of the intestinal peptide transporter hPepT1 and analysis of its transport capacities by docking and pharmacophore mapping. Pedretti A; De Luca L; Marconi C; Negrisoli G; Aldini G; Vistoli G ChemMedChem; 2008 Dec; 3(12):1913-21. PubMed ID: 18979492 [TBL] [Abstract][Full Text] [Related]
8. Modeling of human ghrelin receptor (hGHS-R1a) in its close state and validation by molecular docking. Pedretti A; Vistoli G Bioorg Med Chem; 2007 Apr; 15(8):3054-64. PubMed ID: 17329109 [TBL] [Abstract][Full Text] [Related]
9. Molecular modeling of the alpha9alpha10 nicotinic acetylcholine receptor subtype. Pérez EG; Cassels BK; Zapata-Torres G Bioorg Med Chem Lett; 2009 Jan; 19(1):251-4. PubMed ID: 19013796 [TBL] [Abstract][Full Text] [Related]
10. Docking to flexible nicotinic acetylcholine receptors: a validation study using the acetylcholine binding protein. Sander T; Bruun AT; Balle T J Mol Graph Model; 2010 Nov; 29(3):415-24. PubMed ID: 20884263 [TBL] [Abstract][Full Text] [Related]
11. In silico characterization of cytisinoids docked into an acetylcholine binding protein. Abin-Carriquiry JA; Zunini MP; Cassels BK; Wonnacott S; Dajas F Bioorg Med Chem Lett; 2010 Jun; 20(12):3683-7. PubMed ID: 20493692 [TBL] [Abstract][Full Text] [Related]
12. Interaction of noncompetitive inhibitors with an immobilized alpha3beta4 nicotinic acetylcholine receptor investigated by affinity chromatography, quantitative-structure activity relationship analysis, and molecular docking. Jozwiak K; Ravichandran S; Collins JR; Wainer IW J Med Chem; 2004 Jul; 47(16):4008-21. PubMed ID: 15267239 [TBL] [Abstract][Full Text] [Related]
13. Fragmental modeling of hPepT2 and analysis of its binding features by docking studies and pharmacophore mapping. Pedretti A; De Luca L; Marconi C; Regazzoni L; Aldini G; Vistoli G Bioorg Med Chem; 2011 Aug; 19(15):4544-51. PubMed ID: 21741846 [TBL] [Abstract][Full Text] [Related]
14. Unbinding of nicotine from the acetylcholine binding protein: steered molecular dynamics simulations. Liu X; Xu Y; Wang X; Barrantes FJ; Jiang H J Phys Chem B; 2008 Apr; 112(13):4087-93. PubMed ID: 18327929 [TBL] [Abstract][Full Text] [Related]
15. Complementary three-dimensional quantitative structure-activity relationship modeling of binding affinity and functional potency: a study on alpha4beta2 nicotinic ligands. Tosco P; Ahring PK; Dyhring T; Peters D; Harpsøe K; Liljefors T; Balle T J Med Chem; 2009 Apr; 52(8):2311-6. PubMed ID: 19301898 [TBL] [Abstract][Full Text] [Related]
16. Fully flexible docking models of the complex between alpha7 nicotinic receptor and a potent heptapeptide inhibitor of the beta-amyloid peptide binding. Espinoza-Fonseca LM; Trujillo-Ferrara JG Bioorg Med Chem Lett; 2006 Jul; 16(13):3519-23. PubMed ID: 16621535 [TBL] [Abstract][Full Text] [Related]
17. New ligands with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors. Synthesis, receptor binding, and 3D-QSAR modeling. Audouze K; Nielsen EØ; Olsen GM; Ahring P; Jørgensen TD; Peters D; Liljefors T; Balle T J Med Chem; 2006 Jun; 49(11):3159-71. PubMed ID: 16722635 [TBL] [Abstract][Full Text] [Related]
18. A molecular basis for agonist and antagonist actions at GABA(C) receptors. Abdel-Halim H; Hanrahan JR; Hibbs DE; Johnston GA; Chebib M Chem Biol Drug Des; 2008 Apr; 71(4):306-27. PubMed ID: 18312293 [TBL] [Abstract][Full Text] [Related]
19. A model for the assembly of nicotinic receptors based on subunit-subunit interactions. Ortells MO; Barrantes GE Proteins; 2008 Feb; 70(2):473-88. PubMed ID: 17705274 [TBL] [Abstract][Full Text] [Related]
20. Novel acetylcholine and carbamoylcholine analogues: development of a functionally selective alpha4beta2 nicotinic acetylcholine receptor agonist. Hansen CP; Jensen AA; Christensen JK; Balle T; Liljefors T; Frølund B J Med Chem; 2008 Dec; 51(23):7380-95. PubMed ID: 18989912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]