BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18302976)

  • 1. Retention of genes involved in the adenohypophysis-mediated endocrine system in early vertebrates.
    Okada K; Asai K
    Gene; 2008 Apr; 412(1-2):71-83. PubMed ID: 18302976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dawn and evolution of hormones in the adenohypophysis.
    Kawauchi H; Sower SA
    Gen Comp Endocrinol; 2006 Aug; 148(1):3-14. PubMed ID: 16356498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates.
    Nakatani Y; Takeda H; Kohara Y; Morishita S
    Genome Res; 2007 Sep; 17(9):1254-65. PubMed ID: 17652425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication.
    Braasch I; Volff JN; Schartl M
    Mol Biol Evol; 2009 Apr; 26(4):783-99. PubMed ID: 19174480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after?
    Kuraku S; Meyer A; Kuratani S
    Mol Biol Evol; 2009 Jan; 26(1):47-59. PubMed ID: 18842688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of signaling genes for adaptive immune system evolution in early vertebrates.
    Okada K; Asai K
    BMC Genomics; 2008 May; 9():218. PubMed ID: 18479507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genesis of the vertebrate FoxP subfamily member genes occurred during two ancestral whole genome duplication events.
    Song X; Tang Y; Wang Y
    Gene; 2016 Aug; 588(2):156-62. PubMed ID: 27188254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 2R hypothesis: an update.
    Kasahara M
    Curr Opin Immunol; 2007 Oct; 19(5):547-52. PubMed ID: 17707623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent and dynamic reallocation of pitx gene expression during vertebrate evolution, with emphasis on fish pituitary development.
    Angotzi AR; Ersland KM; Mungpakdee S; Stefansson S; Chourrout D
    Gene; 2008 Jul; 417(1-2):19-26. PubMed ID: 18486365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional evolution of gonadotropin-releasing hormone in vertebrates.
    Okubo K; Nagahama Y
    Acta Physiol (Oxf); 2008 May; 193(1):3-15. PubMed ID: 18284378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms.
    Roth C; Rastogi S; Arvestad L; Dittmar K; Light S; Ekman D; Liberles DA
    J Exp Zool B Mol Dev Evol; 2007 Jan; 308(1):58-73. PubMed ID: 16838295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the expansion of "dangerous" gene repertoires by whole-genome duplications in early vertebrates.
    Singh PP; Affeldt S; Cascone I; Selimoglu R; Camonis J; Isambert H
    Cell Rep; 2012 Nov; 2(5):1387-98. PubMed ID: 23168259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evolution of monoamine receptors and the origin of motivational and emotional systems in vertebrates].
    Vincent JD; Cardinaud B; Vernier P
    Bull Acad Natl Med; 1998; 182(7):1505-14; discussion 1515-6. PubMed ID: 9916344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the growth hormone-prolactin-somatolactin system in relation to vertebrate tetraploidizations.
    Ocampo Daza D; Sundström G; Larsson TA; Larhammar D
    Ann N Y Acad Sci; 2009 Apr; 1163():491-3. PubMed ID: 19456396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary genomics of nuclear receptors: from twenty-five ancestral genes to derived endocrine systems.
    Bertrand S; Brunet FG; Escriva H; Parmentier G; Laudet V; Robinson-Rechavi M
    Mol Biol Evol; 2004 Oct; 21(10):1923-37. PubMed ID: 15229292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piecing together evolution of the vertebrate endocrine system.
    Campbell RK; Satoh N; Degnan BM
    Trends Genet; 2004 Aug; 20(8):359-66. PubMed ID: 15262408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates.
    Cañestro C; Albalat R; Irimia M; Garcia-Fernàndez J
    Semin Cell Dev Biol; 2013 Feb; 24(2):83-94. PubMed ID: 23291262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys.
    Sower SA; Freamat M; Kavanaugh SI
    Gen Comp Endocrinol; 2009 Mar; 161(1):20-9. PubMed ID: 19084529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous expansions of microRNAs and protein-coding genes by gene/genome duplications in early vertebrates.
    Gu X; Su Z; Huang Y
    J Exp Zool B Mol Dev Evol; 2009 May; 312B(3):164-70. PubMed ID: 19214983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.