These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

718 related articles for article (PubMed ID: 18303842)

  • 1. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by Fluorescence in situ hybridization (FISH).
    Hein EM; Rose K; van't Slot G; Friedrich AW; Humpf HU
    J Agric Food Chem; 2008 Mar; 56(6):2281-90. PubMed ID: 18303842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human intestinal hydrolysis of phenol glycosides - a study with quercetin and p-nitrophenol glycosides using ileostomy fluid.
    Knaup B; Kahle K; Erk T; Valotis A; Scheppach W; Schreier P; Richling E
    Mol Nutr Food Res; 2007 Nov; 51(11):1423-9. PubMed ID: 17966139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of quercetin and rutin by the pig caecal microflora prepared by freeze-preservation.
    Keppler K; Hein EM; Humpf HU
    Mol Nutr Food Res; 2006 Aug; 50(8):686-95. PubMed ID: 16835870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model.
    van't Slot G; Humpf HU
    J Agric Food Chem; 2009 Sep; 57(17):8041-8. PubMed ID: 19670865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New flavonol glycosides from Aconitum burnatii Gáyer and Aconitum variegatum L.
    Vitalini S; Braca A; Passarella D; Fico G
    Fitoterapia; 2010 Oct; 81(7):940-7. PubMed ID: 20600691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acylated flavonol tri- and tetraglycosides in the flavonoid metabolome of Cladrastis kentukea (Leguminosae).
    Kite GC; Rowe ER; Lewis GP; Veitch NC
    Phytochemistry; 2011 Apr; 72(4-5):372-84. PubMed ID: 21281953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylated flavonol diglucosides from Meconopsis quintuplinervia.
    Shang XY; Wang YH; Li C; Zhang CZ; Yang YC; Shi JG
    Phytochemistry; 2006 Mar; 67(5):511-5. PubMed ID: 16412484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural investigations of flavonol glycosides from sea buckthorn (Hippophaë rhamnoides) pomace by NMR spectroscopy and HPLC-ESI-MS(n).
    Rösch D; Krumbein A; Mügge C; Kroh LW
    J Agric Food Chem; 2004 Jun; 52(13):4039-46. PubMed ID: 15212446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of the major flavonoid glycosides from Arabidopsis thaliana seeds.
    Kerhoas L; Aouak D; Cingöz A; Routaboul JM; Lepiniec L; Einhorn J; Birlirakis N
    J Agric Food Chem; 2006 Sep; 54(18):6603-12. PubMed ID: 16939316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [HPLC investigation of antioxidant components in Solidago herba].
    Apáti P; Houghton PJ; Kéry A
    Acta Pharm Hung; 2004; 74(4):223-31. PubMed ID: 16316050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new flavonol glycoside from Hylomecon vernalis.
    Lee SY; Kim KH; Lee IK; Lee KH; Choi SU; Lee KR
    Arch Pharm Res; 2012 Mar; 35(3):415-21. PubMed ID: 22477187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavonol tetraglycosides and other constituents from leaves of Styphnolobium japonicum (Leguminosae) and related taxa.
    Kite GC; Stoneham CA; Veitch NC
    Phytochemistry; 2007 May; 68(10):1407-16. PubMed ID: 17462679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the pig caecum model to mimic the human intestinal metabolism of hispidulin and related compounds.
    Labib S; Hummel S; Richling E; Humpf HU; Schreier P
    Mol Nutr Food Res; 2006 Jan; 50(1):78-86. PubMed ID: 16317785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides.
    Arts IC; Sesink AL; Faassen-Peters M; Hollman PC
    Br J Nutr; 2004 Jun; 91(6):841-7. PubMed ID: 15182387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pig caecum model: a suitable tool to study the intestinal metabolism of flavonoids.
    Labib S; Erb A; Kraus M; Wickert T; Richling E
    Mol Nutr Food Res; 2004 Sep; 48(4):326-32. PubMed ID: 15497184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Glycosides of phenolic acid and flavonoids from the leaves of Glycyrrhiza uralensis Ficsh].
    Jia SS; Ma CM; Li YH; Hao JH
    Yao Xue Xue Bao; 1992; 27(6):441-4. PubMed ID: 1442071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A new flavonoid glycoside from Allium cepa L. var agrogatum Don].
    Yang XH; Liu YY; Liu LJ; Zhou XP; Toshio S
    Yao Xue Xue Bao; 2000 Oct; 35(10):752-5. PubMed ID: 11372441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance liquid chromatographic identification of flavonoid monoglycosides from Prunus serotina ehrh.
    Olszewska M
    Acta Pol Pharm; 2005; 62(6):435-41. PubMed ID: 16583982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavonoids from Prunus serotina Ehrh.
    Olszewska M
    Acta Pol Pharm; 2005; 62(2):127-33. PubMed ID: 16161354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora.
    Keppler K; Humpf HU
    Bioorg Med Chem; 2005 Sep; 13(17):5195-205. PubMed ID: 15963727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.