These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18304325)

  • 1. Cellular automata simulation of topological effects on the dynamics of feed-forward motifs.
    Apte AA; Cain JW; Bonchev DG; Fong SS
    J Biol Eng; 2008 Feb; 2():2. PubMed ID: 18304325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach.
    Ma HW; Buer J; Zeng AP
    BMC Bioinformatics; 2004 Dec; 5():199. PubMed ID: 15603590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a classification of isodynamic feed-forward motifs.
    Taylor DT; Cain JW; Bonchev DG; Fong SS; Apte AA; Pace LE
    J Biol Dyn; 2010 Mar; 4(2):196-211. PubMed ID: 22876986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.
    Ahnert SE; Fink TM
    J R Soc Interface; 2016 Jul; 13(120):. PubMed ID: 27440255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network.
    Dobrin R; Beg QK; Barabási AL; Oltvai ZN
    BMC Bioinformatics; 2004 Jan; 5():10. PubMed ID: 15018656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic analysis of noise reduction properties of coupled and isolated feed-forward loops.
    Chakravarty S; Csikász-Nagy A
    PLoS Comput Biol; 2021 Dec; 17(12):e1009622. PubMed ID: 34860832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a lncRNA-mediated feed-forward loop network reveals global topological features and prognostic motifs in human cancers.
    Ning S; Gao Y; Wang P; Li X; Zhi H; Zhang Y; Liu Y; Zhang J; Guo M; Han D; Li X
    Oncotarget; 2016 Jul; 7(29):45937-45947. PubMed ID: 27322142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping network motif tunability and robustness in the design of synthetic signaling circuits.
    Iadevaia S; Nakhleh LK; Azencott R; Ram PT
    PLoS One; 2014; 9(3):e91743. PubMed ID: 24642504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Input-dependent wave propagations in asymmetric cellular automata: possible behaviors of feed-forward loop in biological reaction network.
    Awazu A
    Math Biosci Eng; 2008 Jul; 5(3):419-27. PubMed ID: 18616349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motif Participation by Genes in E. coli Transcriptional Networks.
    Mayo M; Abdelzaher AF; Perkins EJ; Ghosh P
    Front Physiol; 2012; 3():357. PubMed ID: 23055976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motifs enable communication efficiency and fault-tolerance in transcriptional networks.
    Roy S; Ghosh P; Barua D; Das SK
    Sci Rep; 2020 Jun; 10(1):9628. PubMed ID: 32541819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the design principle for motif organization in signaling networks.
    Chatterjee S; Kumar D
    PLoS One; 2011; 6(12):e28606. PubMed ID: 22164309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional Network Growing Models Using Motif-Based Preferential Attachment.
    Abdelzaher AF; Al-Musawi AF; Ghosh P; Mayo ML; Perkins EJ
    Front Bioeng Biotechnol; 2015; 3():157. PubMed ID: 26528473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of integrated noise in pathway-specific signal propagation in feed-forward loops.
    Nandi M
    Theory Biosci; 2021 Jun; 140(2):139-155. PubMed ID: 33751398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network motifs: structure does not determine function.
    Ingram PJ; Stumpf MP; Stark J
    BMC Genomics; 2006 May; 7():108. PubMed ID: 16677373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colored motifs reveal computational building blocks in the C. elegans brain.
    Qian J; Hintze A; Adami C
    PLoS One; 2011 Mar; 6(3):e17013. PubMed ID: 21408227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How motifs condition critical thresholds for tipping cascades in complex networks: Linking micro- to macro-scales.
    Wunderling N; Stumpf B; Krönke J; Staal A; Tuinenburg OA; Winkelmann R; Donges JF
    Chaos; 2020 Apr; 30(4):043129. PubMed ID: 32357654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating temporal and spatial scales: human structural network motifs across age and region of interest size.
    Echtermeyer C; Han CE; Rotarska-Jagiela A; Mohr H; Uhlhaas PJ; Kaiser M
    Front Neuroinform; 2011; 5():10. PubMed ID: 21811454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular genetic regulatory networks increase organization during pattern formation.
    Mohamadlou H; Podgorski GJ; Flann NS
    Biosystems; 2016 Aug; 146():77-84. PubMed ID: 27327866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes.
    Ishihara S; Fujimoto K; Shibata T
    Genes Cells; 2005 Nov; 10(11):1025-38. PubMed ID: 16236132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.