These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 18304369)

  • 1. Pharmacological and therapeutic directions in ADHD: Specificity in the PFC.
    Levy F
    Behav Brain Funct; 2008 Feb; 4():12. PubMed ID: 18304369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction.
    Arnsten AF
    CNS Drugs; 2009; 23 Suppl 1():33-41. PubMed ID: 19621976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catecholamine influences on dorsolateral prefrontal cortical networks.
    Arnsten AF
    Biol Psychiatry; 2011 Jun; 69(12):e89-99. PubMed ID: 21489408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders.
    Arnsten AF; Pliszka SR
    Pharmacol Biochem Behav; 2011 Aug; 99(2):211-6. PubMed ID: 21295057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Emerging Neurobiology of Attention Deficit Hyperactivity Disorder: The Key Role of the Prefrontal Association Cortex.
    Arnsten AF
    J Pediatr; 2009 May; 154(5):I-S43. PubMed ID: 20596295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine vs noradrenaline: inverted-U effects and ADHD theories.
    Levy F
    Aust N Z J Psychiatry; 2009 Feb; 43(2):101-8. PubMed ID: 19153917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prepuberal intranasal dopamine treatment in an animal model of ADHD ameliorates deficient spatial attention, working memory, amino acid transmitters and synaptic markers in prefrontal cortex, ventral and dorsal striatum.
    Ruocco LA; Treno C; Gironi Carnevale UA; Arra C; Mattern C; Huston JP; de Souza Silva MA; Nikolaus S; Scorziello A; Nieddu M; Boatto G; Illiano P; Pagano C; Tino A; Sadile AG
    Amino Acids; 2014 Sep; 46(9):2105-22. PubMed ID: 24862315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonergic and Adrenergic Neuroreceptor Manipulation Ameliorates Core Symptoms of ADHD through Modulating Dopaminergic Receptors in Spontaneously Hypertensive Rats.
    Madhyastha S; Rao MS; Renno WM
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noradrenergic alpha-2 receptor agonists reverse working memory deficits induced by the anxiogenic drug, FG7142, in rats.
    Birnbaum SG; Podell DM; Arnsten AF
    Pharmacol Biochem Behav; 2000 Nov; 67(3):397-403. PubMed ID: 11164065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing, space and ADHD: the dopamine theory revisited.
    Levy F; Swanson JM
    Aust N Z J Psychiatry; 2001 Aug; 35(4):504-11. PubMed ID: 11531733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noradrenergic terminals are the primary source of α
    Devoto P; Flore G; Saba P; Scheggi S; Mulas G; Gambarana C; Spiga S; Gessa GL
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Mar; 90():97-103. PubMed ID: 30472147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of norepinephrine in the control of activity and attentive processes in animal models of attention deficit hyperactivity disorder.
    Viggiano D; Ruocco LA; Arcieri S; Sadile AG
    Neural Plast; 2004; 11(1-2):133-49. PubMed ID: 15303310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of action of guanfacine: a postsynaptic differential approach to the treatment of attention deficit hyperactivity disorder (adhd).
    Alamo C; López-Muñoz F; Sánchez-García J
    Actas Esp Psiquiatr; 2016 May; 44(3):107-12. PubMed ID: 27254403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amelioration of cognitive impairments induced by GABA hypofunction in the male rat prefrontal cortex by direct and indirect dopamine D
    Auger ML; Meccia J; Phillips AG; Floresco SB
    Neuropharmacology; 2020 Jan; 162():107844. PubMed ID: 31704272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catecholamine regulation of the prefrontal cortex.
    Arnsten AF
    J Psychopharmacol; 1997; 11(2):151-62. PubMed ID: 9208378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Towards an understanding of the molecular mechanisms underlying the pharmacological treatments of attention deficit hyperactivity disorder].
    Castellanos FX; Acosta MT
    Rev Neurol; 2011 Mar; 52 Suppl 1():S155-60. PubMed ID: 21365598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways.
    Arnsten AF
    J Clin Psychiatry; 2006; 67 Suppl 8():7-12. PubMed ID: 16961424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylphenidate and atomoxetine enhance prefrontal function through α2-adrenergic and dopamine D1 receptors.
    Gamo NJ; Wang M; Arnsten AF
    J Am Acad Child Adolesc Psychiatry; 2010 Oct; 49(10):1011-23. PubMed ID: 20855046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noradrenergic versus dopaminergic modulation of impulsivity, attention and monitoring behaviour in rats performing the stop-signal task: possible relevance to ADHD.
    Bari A; Robbins TW
    Psychopharmacology (Berl); 2013 Nov; 230(1):89-111. PubMed ID: 23681165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential cognitive actions of norepinephrine a2 and a1 receptor signaling in the prefrontal cortex.
    Berridge CW; Spencer RC
    Brain Res; 2016 Jun; 1641(Pt B):189-96. PubMed ID: 26592951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.