These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18304481)

  • 1. Selective disruption of one Cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity.
    Cang J; Niell CM; Liu X; Pfeiffenberger C; Feldheim DA; Stryker MP
    Neuron; 2008 Feb; 57(4):511-23. PubMed ID: 18304481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus.
    Cang J; Wang L; Stryker MP; Feldheim DA
    J Neurosci; 2008 Oct; 28(43):11015-23. PubMed ID: 18945909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system.
    Pfeiffenberger C; Yamada J; Feldheim DA
    J Neurosci; 2006 Dec; 26(50):12873-84. PubMed ID: 17167078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of Ocular Dominance Patterns in Visual Cortex Originates from Variations in Local Cortical Retinotopy.
    Najafian S; Jin J; Alonso JM
    J Neurosci; 2019 Nov; 39(46):9145-9163. PubMed ID: 31558616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction-specific disruption of subcortical visual behavior and receptive fields in mice lacking the beta2 subunit of nicotinic acetylcholine receptor.
    Wang L; Rangarajan KV; Lawhn-Heath CA; Sarnaik R; Wang BS; Liu X; Cang J
    J Neurosci; 2009 Oct; 29(41):12909-18. PubMed ID: 19828805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unifying model for activity-dependent and activity-independent mechanisms predicts complete structure of topographic maps in ephrin-A deficient mice.
    Tsigankov DN; Koulakov AA
    J Comput Neurosci; 2006 Aug; 21(1):101-14. PubMed ID: 16823525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ephrin-A2 and -A5 influence patterning of normal and novel retinal projections to the thalamus: conserved mapping mechanisms in visual and auditory thalamic targets.
    Ellsworth CA; Lyckman AW; Feldheim DA; Flanagan JG; Sur M
    J Comp Neurol; 2005 Jul; 488(2):140-51. PubMed ID: 15924339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ephrin-As are required for the topographic mapping but not laminar choice of physiologically distinct RGC types.
    Sweeney NT; James KN; Sales EC; Feldheim DA
    Dev Neurobiol; 2015 Jun; 75(6):584-93. PubMed ID: 25649160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic Interaction between Neural Activity and Molecular Cues in the Formation of Topographic Maps.
    Owens MT; Feldheim DA; Stryker MP; Triplett JW
    Neuron; 2015 Sep; 87(6):1261-1273. PubMed ID: 26402608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of local and global topographic order in mouse retinocollicular maps.
    Willshaw DJ; Sterratt DC; Teriakidis A
    J Neurosci; 2014 Jan; 34(5):1791-805. PubMed ID: 24478361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Area map of mouse visual cortex.
    Wang Q; Burkhalter A
    J Comp Neurol; 2007 May; 502(3):339-57. PubMed ID: 17366604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment of multimodal sensory input in the superior colliculus through a gradient-matching mechanism.
    Triplett JW; Phan A; Yamada J; Feldheim DA
    J Neurosci; 2012 Apr; 32(15):5264-71. PubMed ID: 22496572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sinusoidal transformation of the visual field is the basis for periodic maps in area V2.
    Sedigh-Sarvestani M; Lee KS; Jaepel J; Satterfield R; Shultz N; Fitzpatrick D
    Neuron; 2021 Dec; 109(24):4068-4079.e6. PubMed ID: 34687665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ephrin-as guide the formation of functional maps in the visual cortex.
    Cang J; Kaneko M; Yamada J; Woods G; Stryker MP; Feldheim DA
    Neuron; 2005 Nov; 48(4):577-89. PubMed ID: 16301175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional topography and integration of the contralateral and ipsilateral retinocollicular projections of ephrin-A-/- mice.
    Haustead DJ; Lukehurst SS; Clutton GT; Bartlett CA; Dunlop SA; Arrese CA; Sherrard RM; Rodger J
    J Neurosci; 2008 Jul; 28(29):7376-86. PubMed ID: 18632942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development.
    Tavazoie SF; Reid RC
    Nat Neurosci; 2000 Jun; 3(6):608-16. PubMed ID: 10816318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thalamocortical Circuits and Functional Architecture.
    Kremkow J; Alonso JM
    Annu Rev Vis Sci; 2018 Sep; 4():263-285. PubMed ID: 29856937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of retinotopic maps in extrastriate cortex.
    Sereno MI; McDonald CT; Allman JM
    Cereb Cortex; 1994; 4(6):601-20. PubMed ID: 7703687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse.
    Chandrasekaran AR; Plas DT; Gonzalez E; Crair MC
    J Neurosci; 2005 Jul; 25(29):6929-38. PubMed ID: 16033903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Link between orientation and retinotopic maps in primary visual cortex.
    Paik SB; Ringach DL
    Proc Natl Acad Sci U S A; 2012 May; 109(18):7091-6. PubMed ID: 22509015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.