These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18304710)

  • 1. Multiscale modelling of the skeleton for the prediction of the risk of fracture.
    Viceconti M; Taddei F; Van Sint Jan S; Leardini A; Cristofolini L; Stea S; Baruffaldi F; Baleani M
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):845-52. PubMed ID: 18304710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the modelling bone tissue fracture and healing of the bone tissue.
    Doblaré M; García JM
    Acta Cient Venez; 2003; 54(1):58-75. PubMed ID: 14515768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale modelling and nonlinear finite element analysis as clinical tools for the assessment of fracture risk.
    Christen D; Webster DJ; Müller R
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2653-68. PubMed ID: 20439267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic.
    Shefelbine SJ; Augat P; Claes L; Simon U
    J Biomech; 2005 Dec; 38(12):2440-50. PubMed ID: 16214492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-specific finite element models can accurately predict strain levels in long bones.
    Schileo E; Taddei F; Malandrino A; Cristofolini L; Viceconti M
    J Biomech; 2007; 40(13):2982-9. PubMed ID: 17434172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale investigation of the functional properties of the human femur.
    Cristofolini L; Taddei F; Baleani M; Baruffaldi F; Stea S; Viceconti M
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3319-41. PubMed ID: 18593659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of determination and verification of muscle forces in the human musculoskeletal system: Muscle forces to minimise bending stress.
    Sverdlova NS; Witzel U
    J Biomech; 2010 Feb; 43(3):387-96. PubMed ID: 19880120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait.
    Lenaerts G; Bartels W; Gelaude F; Mulier M; Spaepen A; Van der Perre G; Jonkers I
    J Biomech; 2009 Jun; 42(9):1246-51. PubMed ID: 19464012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects of computer models for the prediction of osteoporotic bone fracture risk.
    van Rietbergen B; Weinans H; Huiskes R
    Stud Health Technol Inform; 1997; 40():25-32. PubMed ID: 10168880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What do we know about fracture risk in long-duration spaceflight?
    Lang TF
    J Musculoskelet Neuronal Interact; 2006; 6(4):319-21. PubMed ID: 17185806
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress analyses coupled with damage laws to determine biomechanical risk factors for deep tissue injury during sitting.
    Linder-Ganz E; Gefen A
    J Biomech Eng; 2009 Jan; 131(1):011003. PubMed ID: 19045919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating modelling and experiments to assess dynamic musculoskeletal function in humans.
    Fernandez JW; Pandy MG
    Exp Physiol; 2006 Mar; 91(2):371-82. PubMed ID: 16407475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new meshless approach for subject-specific strain prediction in long bones: Evaluation of accuracy.
    Taddei F; Pani M; Zovatto L; Tonti E; Viceconti M
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1192-9. PubMed ID: 18678436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femoral geometry as a risk factor for osteoporotic hip fracture in men and women.
    Gregory JS; Aspden RM
    Med Eng Phys; 2008 Dec; 30(10):1275-86. PubMed ID: 18976949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.