BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 18305228)

  • 81. Ca
    Meizoso-Huesca A; Pearce L; Barclay CJ; Launikonis BS
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046046
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Gene dose influences cellular and calcium channel dysregulation in heterozygous and homozygous T4826I-RYR1 malignant hyperthermia-susceptible muscle.
    Barrientos GC; Feng W; Truong K; Matthaei KI; Yang T; Allen PD; Lopez JR; Pessah IN
    J Biol Chem; 2012 Jan; 287(4):2863-76. PubMed ID: 22139840
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Dantrolene requires Mg
    Choi RH; Koenig X; Launikonis BS
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4811-4815. PubMed ID: 28373535
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor.
    Zhao X; Weisleder N; Han X; Pan Z; Parness J; Brotto M; Ma J
    J Biol Chem; 2006 Nov; 281(44):33477-86. PubMed ID: 16945924
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Functional characterization of malignant hyperthermia-associated RyR1 mutations in exon 44, using the human myotube model.
    Wehner M; Rueffert H; Koenig F; Olthoff D
    Neuromuscul Disord; 2004 Jul; 14(7):429-37. PubMed ID: 15210166
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Functional effects of central core disease mutations in the cytoplasmic region of the skeletal muscle ryanodine receptor.
    Avila G; Dirksen RT
    J Gen Physiol; 2001 Sep; 118(3):277-90. PubMed ID: 11524458
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Functional analysis of the R1086H malignant hyperthermia mutation in the DHPR reveals an unexpected influence of the III-IV loop on skeletal muscle EC coupling.
    Weiss RG; O'Connell KM; Flucher BE; Allen PD; Grabner M; Dirksen RT
    Am J Physiol Cell Physiol; 2004 Oct; 287(4):C1094-102. PubMed ID: 15201141
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Modulation of the frequency of spontaneous sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks) by myoplasmic [Mg2+] in frog skeletal muscle.
    Lacampagne A; Klein MG; Schneider MF
    J Gen Physiol; 1998 Feb; 111(2):207-24. PubMed ID: 9450940
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Malignant hyperthermia: an inherited disorder of skeletal muscle Ca+ regulation.
    Louis CF; Balog EM; Fruen BR
    Biosci Rep; 2001 Apr; 21(2):155-68. PubMed ID: 11725864
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor.
    Kobayashi S; Yano M; Suetomi T; Ono M; Tateishi H; Mochizuki M; Xu X; Uchinoumi H; Okuda S; Yamamoto T; Koseki N; Kyushiki H; Ikemoto N; Matsuzaki M
    J Am Coll Cardiol; 2009 May; 53(21):1993-2005. PubMed ID: 19460614
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms.
    Gaburjakova J; Gaburjakova M
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982484
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Sarcoplasmic reticular Ca
    Liu SX; Matthews HR; Huang CL
    Sci Rep; 2021 Feb; 11(1):2846. PubMed ID: 33531589
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Functional defects in six ryanodine receptor isoform-1 (RyR1) mutations associated with malignant hyperthermia and their impact on skeletal excitation-contraction coupling.
    Yang T; Ta TA; Pessah IN; Allen PD
    J Biol Chem; 2003 Jul; 278(28):25722-30. PubMed ID: 12732639
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Excitation--contraction uncoupling by a human central core disease mutation in the ryanodine receptor.
    Avila G; O'Brien JJ; Dirksen RT
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4215-20. PubMed ID: 11274444
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Modulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1.
    Yamaguchi N; Prosser BL; Ghassemi F; Xu L; Pasek DA; Eu JP; Hernández-Ochoa EO; Cannon BR; Wilder PT; Lovering RM; Weber D; Melzer W; Schneider MF; Meissner G
    Am J Physiol Cell Physiol; 2011 May; 300(5):C998-C1012. PubMed ID: 21289290
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Essential Role of Calmodulin in RyR Inhibition by Dantrolene.
    Oo YW; Gomez-Hurtado N; Walweel K; van Helden DF; Imtiaz MS; Knollmann BC; Laver DR
    Mol Pharmacol; 2015 Jul; 88(1):57-63. PubMed ID: 25920678
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Novel double and single ryanodine receptor 1 variants in two Austrian malignant hyperthermia families.
    Kaufmann A; Kraft B; Michalek-Sauberer A; Weindlmayr M; Kress HG; Steinboeck F; Weigl LG
    Anesth Analg; 2012 May; 114(5):1017-25. PubMed ID: 22415532
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Effects of azumolene on Ca2+ sparks in skeletal muscle fibers.
    Zhang Y; Rodney GG; Schneider MF
    J Pharmacol Exp Ther; 2005 Jul; 314(1):94-102. PubMed ID: 15831441
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms.
    Qin J; Valle G; Nani A; Chen H; Ramos-Franco J; Nori A; Volpe P; Fill M
    Biophys J; 2009 Oct; 97(7):1961-70. PubMed ID: 19804727
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia.
    Laver DR; Owen VJ; Junankar PR; Taske NL; Dulhunty AF; Lamb GD
    Biophys J; 1997 Oct; 73(4):1913-24. PubMed ID: 9336187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.