These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 18305258)

  • 21. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deconstructing events: the neural bases for space, time, and causality.
    Kranjec A; Cardillo ER; Schmidt GL; Lehet M; Chatterjee A
    J Cogn Neurosci; 2012 Jan; 24(1):1-16. PubMed ID: 21861674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging.
    Sokolov AA; Erb M; Grodd W; Pavlova MA
    Cereb Cortex; 2014 Mar; 24(3):626-32. PubMed ID: 23169930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex.
    Assmus A; Marshall JC; Noth J; Zilles K; Fink GR
    Neuroscience; 2005; 132(4):923-7. PubMed ID: 15857698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Executive control of spatial attention shifts in the auditory compared to the visual modality.
    Krumbholz K; Nobis EA; Weatheritt RJ; Fink GR
    Hum Brain Mapp; 2009 May; 30(5):1457-69. PubMed ID: 18649349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural bases of the interactions between spatial attention and conscious perception.
    Chica AB; Paz-Alonso PM; Valero-Cabré A; Bartolomeo P
    Cereb Cortex; 2013 Jun; 23(6):1269-79. PubMed ID: 22508767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural correlates of covert orienting of visual spatial attention along vertical and horizontal dimensions.
    Mao L; Zhou B; Zhou W; Han S
    Brain Res; 2007 Mar; 1136(1):142-53. PubMed ID: 17239829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulus-Specific Visual Working Memory Representations in Human Cerebellar Lobule VIIb/VIIIa.
    Brissenden JA; Tobyne SM; Halko MA; Somers DC
    J Neurosci; 2021 Feb; 41(5):1033-1045. PubMed ID: 33214320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A test of the role of two prefrontal/ subcortical networks in the "sequencing" of non-motor, visuo-spatial information.
    Tracy JI; La Q; Osipowicz K; Mamtani A; Schwartz DP; Uzelac G
    Brain Imaging Behav; 2011 Sep; 5(3):159-70. PubMed ID: 21503630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task.
    Chen SH; Desmond JE
    Neuropsychologia; 2005; 43(9):1227-37. PubMed ID: 15949507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of nonverbal auditory memory.
    Mathiak K; Hertrich I; Grodd W; Ackermann H
    Neuroimage; 2004 Jan; 21(1):154-62. PubMed ID: 14741652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cognitive and motor loops of the human cerebro-cerebellar system.
    Salmi J; Pallesen KJ; Neuvonen T; Brattico E; Korvenoja A; Salonen O; Carlson S
    J Cogn Neurosci; 2010 Nov; 22(11):2663-76. PubMed ID: 19925191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network.
    Coull JT; Nazarian B; Vidal F
    J Cogn Neurosci; 2008 Dec; 20(12):2185-97. PubMed ID: 18457512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hippocampal-cerebellar interaction during spatio-temporal prediction.
    Onuki Y; Van Someren EJ; De Zeeuw CI; Van der Werf YD
    Cereb Cortex; 2015 Feb; 25(2):313-21. PubMed ID: 23968839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orbito-frontal cortex is necessary for temporal context memory.
    Duarte A; Henson RN; Knight RT; Emery T; Graham KS
    J Cogn Neurosci; 2010 Aug; 22(8):1819-31. PubMed ID: 19642880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between ego- and allocentric neuronal representations of space.
    Neggers SF; Van der Lubbe RH; Ramsey NF; Postma A
    Neuroimage; 2006 May; 31(1):320-31. PubMed ID: 16473025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The timing and precision of action prediction in the aging brain.
    Diersch N; Jones AL; Cross ES
    Hum Brain Mapp; 2016 Jan; 37(1):54-66. PubMed ID: 26503586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural correlates of primary and reflective consciousness of spatial orienting.
    Bartolomeo P; Zieren N; Vohn R; Dubois B; Sturm W
    Neuropsychologia; 2008 Jan; 46(1):348-61. PubMed ID: 17963799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.