These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 18305651)
1. Estimate of the incoherent-scattering contribution to lidar backscatter from clouds. de Wolf DA; Russchenberg HW; Ligthart LP Appl Opt; 1999 Jan; 38(3):585-93. PubMed ID: 18305651 [TBL] [Abstract][Full Text] [Related]
2. Lidar for multiple backscattering and depolarization observations. Allen RJ; Platt CM Appl Opt; 1977 Dec; 16(12):3193-9. PubMed ID: 20174327 [TBL] [Abstract][Full Text] [Related]
3. Multiple-Scattering Influence on Extinction-and Backscatter-Coefficient Measurements with Raman and High-Spectral-Resolution Lidars. Wandinger U Appl Opt; 1998 Jan; 37(3):417-27. PubMed ID: 18268599 [TBL] [Abstract][Full Text] [Related]
5. Effect of multiple scattering on depolarization measurements with spaceborne lidars. Reichardt S; Reichardt J Appl Opt; 2003 Jun; 42(18):3620-33. PubMed ID: 12833968 [TBL] [Abstract][Full Text] [Related]
6. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements. Cho HM; Yang P; Kattawar GW; Nasiri SL; Hu Y; Minnis P; Trepte C; Winker D Opt Express; 2008 Mar; 16(6):3931-48. PubMed ID: 18542490 [TBL] [Abstract][Full Text] [Related]
7. Transmitted beam profiles, integrated backscatter, and rangeresolved backscatter in inhomogeneous laboratory water droplet clouds. Bissonnette LR; Smith RB; Ulitsky A; Houston JD; Carswell AI Appl Opt; 1988 Jun; 27(12):2485-94. PubMed ID: 20531781 [TBL] [Abstract][Full Text] [Related]
8. Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments. Piskozub J; Stramski D; Terrill E; Melville WK Appl Opt; 2004 Aug; 43(24):4723-31. PubMed ID: 15352398 [TBL] [Abstract][Full Text] [Related]
9. Lidar multiple scattering: improvement of Bissonnette's paraxial approximation. Wiegner M; Echle G Appl Opt; 1993 Nov; 32(33):6789-803. PubMed ID: 20856532 [TBL] [Abstract][Full Text] [Related]
10. Retrieval of water cloud properties from carbon dioxide lidar soundings. Piatt CM; Takashima T Appl Opt; 1987 Apr; 26(7):1257-63. PubMed ID: 20454313 [TBL] [Abstract][Full Text] [Related]
11. Analysis of lidar backscatter profiles in optically thin clouds. Young SA Appl Opt; 1995 Oct; 34(30):7019-31. PubMed ID: 21060563 [TBL] [Abstract][Full Text] [Related]
13. Multiple scattering from clear atmosphere obscured by transparent crystal clouds in satellite-borne lidar sensing. Flesia C; Starkov AV Appl Opt; 1996 May; 35(15):2637-41. PubMed ID: 21085409 [TBL] [Abstract][Full Text] [Related]
14. Spatial distribution of doubly scattered polarized laser radiation in the focal plane of a lidar receiver. Griaznov V; Veselovskii I; Di Girolamo P; Korenskii M; Summa D Appl Opt; 2007 Sep; 46(27):6821-30. PubMed ID: 17882305 [TBL] [Abstract][Full Text] [Related]
17. The analysis of lidar signatures of cirrus clouds. Davis PA Appl Opt; 1969 Oct; 8(10):2099-102. PubMed ID: 20072584 [TBL] [Abstract][Full Text] [Related]
18. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Sakai T; Nagai T; Nakazato M; Mano Y; Matsumura T Appl Opt; 2003 Dec; 42(36):7103-16. PubMed ID: 14717284 [TBL] [Abstract][Full Text] [Related]
19. Optimal truncation and optical efficiency of an apertured coherent lidar focused on an incoherent backscatter target. Rye BJ; Frehlich RG Appl Opt; 1992 May; 31(15):2891-9. PubMed ID: 20725223 [TBL] [Abstract][Full Text] [Related]
20. Practical model for the calculation of multiply scattered lidar returns. Eloranta EW Appl Opt; 1998 Apr; 37(12):2464-72. PubMed ID: 18273181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]