These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18305706)

  • 41. 3D volume-ablation rate and thermal side effects with the Er:YAG and Nd:YAG laser.
    Mehl A; Kremers L; Salzmann K; Hickel R
    Dent Mater; 1997 Jul; 13(4):246-51. PubMed ID: 11696904
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Frequency-locked, injection-seeded, pulsed narrowband optical parametric generator.
    Reichardt TA; Bambha RP; Kulp TJ; Schmitt RL
    Appl Opt; 2003 Jun; 42(18):3564-9. PubMed ID: 12833962
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision.
    Hamilton CE
    Opt Lett; 1992 May; 17(10):728-30. PubMed ID: 19794611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High efficiency Nd:YAG ceramic eye-safe laser operating at 1442.8 nm.
    Zhang HN; Chen XH; Wang QP; Zhang XY; Chang J; Gao L; Shen HB; Cong ZH; Liu ZJ; Tao XT; Li P
    Opt Lett; 2013 Aug; 38(16):3075-7. PubMed ID: 24104652
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly efficient solar-pumped Nd:YAG laser.
    Liang D; Almeida J
    Opt Express; 2011 Dec; 19(27):26399-405. PubMed ID: 22274224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 1.4-kW Nd:YAG slab laser with a diffusive closed-coupled pump cavity.
    Seguchi M; Kuba K
    Opt Lett; 1995 Feb; 20(3):300-2. PubMed ID: 19859167
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation of dynamic cavity in a self-starting high-average-power Nd:YAG laser oscillator.
    Antipov O; Kuzhelev A; Chausov D
    Opt Express; 1999 Dec; 5(12):286-91. PubMed ID: 19401733
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature response in the pulpal chamber of primary human teeth exposed to Nd:YAG laser using a picosecond pulsed regime.
    Lizarelli RF; Moriyama LT; Bagnato VS
    Photomed Laser Surg; 2006 Oct; 24(5):610-5. PubMed ID: 17069492
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diode-pumped Nd:YAG laser with reciprocal dynamic holographic cavity.
    Antipov O; Eremeykin O; Ievlev A; Savikin A
    Opt Express; 2004 Sep; 12(18):4313-9. PubMed ID: 19483978
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatially and temporally resolved electron number density measurements in a decaying laser-induced plasma using hydrogen-alpha line profiles.
    Parigger C; Plemmons DH; Lewis JW
    Appl Opt; 1995 Jun; 34(18):3325-30. PubMed ID: 21052139
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds.
    Tamura J; Kumaki M; Kondo K; Kanesue T; Okamura M
    Rev Sci Instrum; 2016 Feb; 87(2):02A919. PubMed ID: 26931980
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition.
    Pavel N; Tsunekane M; Taira T
    Opt Express; 2011 May; 19(10):9378-84. PubMed ID: 21643194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Resonator configuration for the suppression of relaxation oscillations in a long-pulsed Nd:YAG laser.
    Sandoval RP
    Appl Opt; 1979 May; 18(9):1328-33. PubMed ID: 20212844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase, compositional, and morphological changes of human dentin after Nd:YAG laser treatment.
    Lin CP; Lee BS; Lin FH; Kok SH; Lan WH
    J Endod; 2001 Jun; 27(6):389-93. PubMed ID: 11487131
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dysprosium-doped PbGa2S4 laser excited by diode-pumped Nd:YAG laser.
    Sulc J; Jelínková H; Doroshenko ME; Basiev TT; Osiko VV; Badikov VV; Badikov DV
    Opt Lett; 2010 Sep; 35(18):3051-3. PubMed ID: 20847775
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Methane detection with a narrow-band source at 3.4 µm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing.
    Lancaster DG; Dawes JM
    Appl Opt; 1996 Jul; 35(21):4041-5. PubMed ID: 21102808
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A highly efficient and compact long pulse Nd:YAG rod laser with 540 J of pulse energy for welding application.
    Choubey A; Vishwakarma SC; Misra P; Jain RK; Agrawal DK; Arya R; Upadhyaya BN; Oak SM
    Rev Sci Instrum; 2013 Jul; 84(7):073108. PubMed ID: 23902045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser.
    Wang Z; Liu H; Wang J; Lv Y; Sang Y; Lan R; Yu H; Xu X; Shao Z
    Opt Express; 2009 Jul; 17(14):12076-81. PubMed ID: 19582123
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 6.5-W, 532-nm radiation by cw resonant external-cavity second-harmonic generation of an 18-W Nd:YAG laser in LiB(3)O(5).
    Yang ST; Pohalski CC; Gustafson EK; Byer RL; Feigelson RS; Raymakers RJ; Route RK
    Opt Lett; 1991 Oct; 16(19):1493-5. PubMed ID: 19777011
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-power high-repetition-rate UV light at 355 nm generated by a diode-end-pumped passively Q-switched Nd:YAG laser.
    Jia FQ; Zheng Q; Xue QH; Bu YK; Qian LS
    Appl Opt; 2007 May; 46(15):2975-9. PubMed ID: 17514246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.