These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18305745)

  • 1. Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure.
    Poleshchuk AG; Churin EG; Koronkevich VP; Korolkov VP; Kharissov AA; Cherkashin VV; Kiryanov VP; Kiryanov AV; Kokarev SA; Verhoglyad AG
    Appl Opt; 1999 Mar; 38(8):1295-301. PubMed ID: 18305745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed laser writing of arbitrary patterns in polar coordinate system.
    Bai Z; Wei J; Liang X; Zhang K; Wei T; Wang R
    Rev Sci Instrum; 2016 Dec; 87(12):125118. PubMed ID: 28040956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing.
    Yu W; Yuan X; Ngo N; Que W; Cheong W; Koudriachov V
    Opt Express; 2002 May; 10(10):443-8. PubMed ID: 19436379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements.
    Korolkov VP; Nasyrov RK; Shimansky RV
    Appl Opt; 2006 Jan; 45(1):53-62. PubMed ID: 16422320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency blazed diffractive optical elements for the violet wavelength fabricated by electron-beam lithography.
    Shiono T; Hamamoto T; Takahara K
    Appl Opt; 2002 May; 41(13):2390-3. PubMed ID: 12009146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and optimization of fabrication of continuous-relief diffractive optical elements.
    Hessler T; Rossi M; Kunz RE; Gale MT
    Appl Opt; 1998 Jul; 37(19):4069-79. PubMed ID: 18285842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.
    Shan M; Tan J
    Opt Express; 2007 Dec; 15(25):17032-7. PubMed ID: 19550995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing.
    Tan J; Shan M; Zhao C; Liu J
    Appl Opt; 2008 Apr; 47(10):1430-3. PubMed ID: 18382568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithographic fabrication of large diffractive optical elements on a concave lens surface.
    Xie Y; Lu Z; Li F; Zhao J; Weng Z
    Opt Express; 2002 Oct; 10(20):1043-7. PubMed ID: 19451962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of large-diameter diffractive elements with laser pattern generation.
    Bowen JP; Michaels RL; Blough CG
    Appl Opt; 1997 Dec; 36(34):8970-5. PubMed ID: 18264451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilevel diffractive microlens fabrication by one-step laser-assisted chemical etching upon high-energy-beam sensitive glass.
    Wang MR; Su H
    Opt Lett; 1998 Jun; 23(11):876-8. PubMed ID: 18087371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and evaluation of a diamond diffractive fan-out element for high power lasers.
    Karlsson M; Nikolajeff F
    Opt Express; 2003 Feb; 11(3):191-8. PubMed ID: 19461723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-beam writing system and its application to large and high-density diffractive optic elements.
    Ogata S; Tada M; Yoneda M
    Appl Opt; 1994 Apr; 33(10):2032-8. PubMed ID: 20885540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of diffractive optical elements in InP for monolithic integration with surface-emitting components.
    Vukusic J; Bengtsson J; Ghisoni M; Larsson A; Carlström CF; Landgren G
    Appl Opt; 2000 Jan; 39(3):398-401. PubMed ID: 18337907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffractive Sensor Elements for Registration of Long-Term Instability at Writing of Computer-Generated Holograms.
    Shimansky RV; Belousov DA; Korolkov VP; Kuts RI
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffractive optical elements in single crystal diamond.
    Wildi T; Kiss M; Quack N
    Opt Lett; 2020 Jul; 45(13):3458-3461. PubMed ID: 32630871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithographic fabrication of diffractive optical elements in hybrid sol-gel glass on 3-D curved surfaces.
    Wang T; Yu W; Zhang D; Li C; Zhang H; Xu W; Xu Z; Liu H; Sun Q; Lu Z
    Opt Express; 2010 Nov; 18(24):25102-7. PubMed ID: 21164856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Fabrication of a Hybrid Diffractive Optical Device for Multiple-Line Generation over a Wide Angle.
    Neto LG; Roberto LB; Verdonck P; Mansano RD; Cirino GA; Stefani MA
    Appl Opt; 2001 Jan; 40(2):211-8. PubMed ID: 18356992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grating- and checkerboard-based zone plates as an optical array generator with a favorable beam shape.
    Sabatyan A; Rafighdoost J
    Appl Opt; 2017 Jul; 56(19):5355-5359. PubMed ID: 29047489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polygon approximation of the fringes of diffractive elements.
    Kallioniemi I; Saarinen J; Blomstedt K; Turunen J
    Appl Opt; 1997 Oct; 36(28):7217-23. PubMed ID: 18264230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.