BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 18305871)

  • 1. Rapid prototyping of multilayer thiolene microfluidic chips by photopolymerization and transfer lamination.
    Natali M; Begolo S; Carofiglio T; Mistura G
    Lab Chip; 2008 Mar; 8(3):492-4. PubMed ID: 18305871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontal photopolymerization for microfluidic applications.
    Cabral JT; Hudson SD; Harrison C; Douglas JF
    Langmuir; 2004 Nov; 20(23):10020-9. PubMed ID: 15518489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra rapid prototyping of microfluidic systems using liquid phase photopolymerization.
    Khoury C; Mensing GA; Beebe DJ
    Lab Chip; 2002 Feb; 2(1):50-5. PubMed ID: 15100862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips.
    Vulto P; Glade N; Altomare L; Bablet J; Tin LD; Medoro G; Chartier I; Manaresi N; Tartagni M; Guerrieri R
    Lab Chip; 2005 Feb; 5(2):158-62. PubMed ID: 15672129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry.
    Sorouraddin MH; Amjadi M; Safi-Shalamzari M
    Anal Chim Acta; 2007 Apr; 589(1):84-8. PubMed ID: 17397657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter.
    Yuen PK; Goral VN
    Lab Chip; 2010 Feb; 10(3):384-7. PubMed ID: 20091012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of thermoplastics chips through lamination based techniques.
    Miserere S; Mottet G; Taniga V; Descroix S; Viovy JL; Malaquin L
    Lab Chip; 2012 Apr; 12(10):1849-56. PubMed ID: 22487893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic platform for the generation of organic-phase microreactors.
    Cygan ZT; Cabral JT; Beers KL; Amis EJ
    Langmuir; 2005 Apr; 21(8):3629-34. PubMed ID: 15807612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laminated thin-film Teflon chips for petrochemical applications.
    de Haas TW; Fadaei H; Sinton D
    Lab Chip; 2012 Nov; 12(21):4236-9. PubMed ID: 22971914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping.
    Bhagat AA; Jothimuthu P; Papautsky I
    Lab Chip; 2007 Sep; 7(9):1192-7. PubMed ID: 17713619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips.
    Chen Y; Zhang L; Chen G
    Electrophoresis; 2008 May; 29(9):1801-14. PubMed ID: 18384069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding.
    Koesdjojo MT; Koch CR; Remcho VT
    Anal Chem; 2009 Feb; 81(4):1652-9. PubMed ID: 19166284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct projection on dry-film photoresist (DP(2)): do-it-yourself three-dimensional polymer microfluidics.
    Zhao S; Cong H; Pan T
    Lab Chip; 2009 Apr; 9(8):1128-32. PubMed ID: 19350095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.
    Hartmann DM; Nevill JT; Pettigrew KI; Votaw G; Kung PJ; Crenshaw HC
    Lab Chip; 2008 Apr; 8(4):609-16. PubMed ID: 18369517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic valves with integrated structured elastomeric membranes for reversible fluidic entrapment and in situ channel functionalization.
    Vanapalli SA; Wijnperle D; van den Berg A; Mugele F; Duits MH
    Lab Chip; 2009 May; 9(10):1461-7. PubMed ID: 19417915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture.
    Puleo CM; McIntosh Ambrose W; Takezawa T; Elisseeff J; Wang TH
    Lab Chip; 2009 Nov; 9(22):3221-7. PubMed ID: 19865728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels.
    Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH
    Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.