BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18305902)

  • 1. Evaluation of an injectable, photopolymerizable three-dimensional scaffold based on D: ,L: -lactide and epsilon-caprolactone in a tibial goat model.
    Vertenten G; Vlaminck L; Gorski T; Schreurs E; Van Den Broeck W; Duchateau L; Schacht E; Gasthuys F
    J Mater Sci Mater Med; 2008 Jul; 19(7):2761-9. PubMed ID: 18305902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of an injectable, photopolymerizable, and three-dimensional scaffold based on methacrylate-endcapped poly(D,L-lactide-co-epsilon-caprolactone) combined with autologous mesenchymal stem cells in a goat tibial unicortical defect model.
    Vertenten G; Lippens E; Gironès J; Gorski T; Declercq H; Saunders J; Van den Broeck W; Chiers K; Duchateau L; Schacht E; Cornelissen M; Gasthuys F; Vlaminck L
    Tissue Eng Part A; 2009 Jul; 15(7):1501-11. PubMed ID: 19072089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel osteoconductive β-tricalcium phosphate/poly(L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect.
    Pihlman H; Keränen P; Paakinaho K; Linden J; Hannula M; Manninen IK; Hyttinen J; Manninen M; Laitinen-Vapaavuori O
    J Mater Sci Mater Med; 2018 Oct; 29(10):156. PubMed ID: 30298429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Establishment of a goat model of tibial bone hole defect suitable for repair using injectable bone materials].
    Cheng WJ; Jin D; Pei GX; Guo G; Li X; Xiang DY
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Jan; 30(1):35-7. PubMed ID: 20117979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate.
    Declercq HA; Cornelissen MJ; Gorskiy TL; Schacht EH
    J Mater Sci Mater Med; 2006 Feb; 17(2):113-22. PubMed ID: 16502243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering.
    Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO
    J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The copolymer of epsilon-caprolactone-lactide and tricalcium phosphate does not enhance bone growth in mandibular defect of sheep.
    Ekholm M; Hietanen J; Tulamo RM; Muhonen J; Lindqvist C; Kellomäki M; Suuronen R
    J Mater Sci Mater Med; 2006 Feb; 17(2):139-45. PubMed ID: 16502246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel injectable poly(epsilon-caprolactone)/calcium sulfate system for bone regeneration: synthesis and characterization.
    La Gatta A; De Rosa A; Laurienzo P; Malinconico M; De Rosa M; Schiraldi C
    Macromol Biosci; 2005 Nov; 5(11):1108-17. PubMed ID: 16245268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable bioactive glass/biodegradable polymer composite for bone and cartilage reconstruction: concept and experimental outcome with thermoplastic composites of poly(epsilon-caprolactone-co-D,L-lactide) and bioactive glass S53P4.
    Aho AJ; Tirri T; Kukkonen J; Strandberg N; Rich J; Seppälä J; Yli-Urpo A
    J Mater Sci Mater Med; 2004 Oct; 15(10):1165-73. PubMed ID: 15516880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone.
    Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R
    Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate.
    Ahola N; Veiranto M; Rich J; Efimov A; Hannula M; Seppälä J; Kellomäki M
    J Biomater Appl; 2013 Nov; 28(4):529-43. PubMed ID: 23048066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D,L-lactide and epsilon-caprolactone: influence of pore volume, pore size and pore shape.
    Declercq HA; Gorski TL; Schacht EH; Cornelissen MJ
    J Mater Sci Mater Med; 2008 Sep; 19(9):3105-14. PubMed ID: 18415000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites.
    Kikuchi M; Koyama Y; Yamada T; Imamura Y; Okada T; Shirahama N; Akita K; Takakuda K; Tanaka J
    Biomaterials; 2004 Dec; 25(28):5979-86. PubMed ID: 15183612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(D, L-lactide/epsilon-caprolactone)/hydroxyapatite composites as bone filler: an in vivo study in rats.
    Senköylü A; Ural E; Kesencì K; Sìmşek A; Ruacan S; Fambri L; Migliaresi C; Pìskìn E
    Int J Artif Organs; 2002 Dec; 25(12):1174-9. PubMed ID: 12518962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short term in vivo biocompatibility testing of biodegradable poly(D,L-lactide)--growth factor coating for orthopaedic implants.
    Wildemann B; Sander A; Schwabe P; Lucke M; Stöckle U; Raschke M; Haas NP; Schmidmaier G
    Biomaterials; 2005 Jun; 26(18):4035-40. PubMed ID: 15626449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia.
    Chu W; Gan Y; Zhuang Y; Wang X; Zhao J; Tang T; Dai K
    Stem Cell Res Ther; 2018 Jun; 9(1):157. PubMed ID: 29895312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Repair of the radial defect of rabbit by polyester/tricalcium phosphate scaffolds prepared by rapid prototyping technology].
    Sun L; Hu YY; Xiong Z; Wang WM; Pan Y
    Zhonghua Wai Ke Za Zhi; 2005 Apr; 43(8):535-9. PubMed ID: 15938915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.