These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18305902)

  • 21. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repair of the radial defect of rabbit with polyester/tricalcium phosphate scaffolds prepared by rapid prototyping technology.
    Sun L; Hu YY; Xiong Z; Wang WM; Pan Y
    Chin J Traumatol; 2006 Oct; 9(5):298-302. PubMed ID: 17026863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screen-enrich-combine circulating system to prepare MSC/β-TCP for bone repair in fractures with depressed tibial plateau.
    Chu W; Wang X; Gan Y; Zhuang Y; Shi D; Liu F; Sun Y; Zhao J; Tang T; Dai K
    Regen Med; 2019 Jun; 14(6):555-569. PubMed ID: 31115268
    [No Abstract]   [Full Text] [Related]  

  • 24. Ectopic bone formation in and soft-tissue response to P(CL/DLLA)/bioactive glass composite scaffolds.
    Meretoja VV; Tirri T; Malin M; Seppälä JV; Närhi TO
    Clin Oral Implants Res; 2014 Feb; 25(2):159-64. PubMed ID: 23106633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of beta-tricalcium phosphate/poly-l-lactide composites on radial bone defects of rabbit.
    Zhu ZJ; Shen H; Wang YP; Jiang Y; Zhang XL; Yuan GY
    Asian Pac J Trop Med; 2013 Sep; 6(9):753-6. PubMed ID: 23827157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly(epsilon-caprolactone-co-DL-lactide) and bioactive glass (S53P4).
    Jaakkola T; Rich J; Tirri T; Närhi T; Jokinen M; Seppälä J; Yli-Urpo A
    Biomaterials; 2004 Feb; 25(4):575-81. PubMed ID: 14607495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.
    Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J
    J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of a new bioactive fibrous glassy scaffold on bone repair.
    Gabbai-Armelin PR; Souza MT; Kido HW; Tim CR; Bossini PS; Magri AM; Fernandes KR; Pastor FA; Zanotto ED; Parizotto NA; Peitl O; Renno AC
    J Mater Sci Mater Med; 2015 May; 26(5):177. PubMed ID: 25893392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradable polymer networks based on oligolactide macromers: synthesis, properties and biomedical applications.
    Schnabelrauch M; Vogt S; Larcher Y; Wilke I
    Biomol Eng; 2002 Aug; 19(2-6):295-8. PubMed ID: 12202198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae.
    Li JJ; Roohani-Esfahani SI; Dunstan CR; Quach T; Steck R; Saifzadeh S; Pivonka P; Zreiqat H
    Biomed Mater; 2016 Feb; 11(1):015016. PubMed ID: 26894676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L
    J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(L-Lactide)/Poly(ε-Caprolactone) and Collagen/β-Tricalcium Phosphate Scaffolds for the Treatment of Critical-Sized Rat Alveolar Defects: A Microtomographic, Molecular-Biological, and Histological Study.
    Ekin O; Calis M; Aliyev A; Yar AS; Korkusuz P; Bilgic E; Aydin HM; Celik HH; Ozgur F; Vargel I
    Cleft Palate Craniofac J; 2016 Jul; 53(4):453-63. PubMed ID: 26506043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies.
    Veronesi F; Giavaresi G; Guarino V; Raucci MG; Sandri M; Tampieri A; Ambrosio L; Fini M
    J Biomed Mater Res A; 2015 Sep; 103(9):2932-41. PubMed ID: 25689266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repair of bone defect in caprine tibia using a laminated scaffold with bone marrow stromal cells loaded poly (L-lactic acid)/β-tricalcium phosphate.
    Huang J; Zhang L; Chu B; Peng X; Tang S
    Artif Organs; 2011 Jan; 35(1):49-57. PubMed ID: 20946293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular biological evaluation of bioactive glass microspheres and adjunct bone morphogenetic protein 2 gene transfer in the enhancement of new bone formation.
    Välimäki VV; Yrjans JJ; Vuorio EI; Aro HT
    Tissue Eng; 2005; 11(3-4):387-94. PubMed ID: 15869418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly(D,L-lactide/epsilon-caprolactone)/hydroxyapatite composites.
    Ural E; Kesenci K; Fambri L; Migliaresi C; Piskin E
    Biomaterials; 2000 Nov; 21(21):2147-54. PubMed ID: 10985487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Preparation and degradation of poly(DL-lactide)/calcium phosphates porous scaffolds].
    Quan D; Liao K; Luo B; Lu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):174-7. PubMed ID: 15143533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes.
    Ignatius AA; Betz O; Augat P; Claes LE
    J Biomed Mater Res; 2001; 58(6):701-9. PubMed ID: 11745524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation.
    Flauder S; Sajzew R; Müller FA
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.