BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18305933)

  • 1. Vertical perturbations of human gait: organisation and adaptation of leg muscle responses.
    Bachmann V; Müller R; van Hedel HJ; Dietz V
    Exp Brain Res; 2008 Mar; 186(1):123-30. PubMed ID: 18305933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reflex adaptations during treadmill walking with increased body load.
    Fouad K; Bastiaanse CM; Dietz V
    Exp Brain Res; 2001 Mar; 137(2):133-40. PubMed ID: 11315541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal coordination of arm and leg movements during human locomotion.
    Dietz V; Fouad K; Bastiaanse CM
    Eur J Neurosci; 2001 Dec; 14(11):1906-14. PubMed ID: 11860485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive behaviour of the spinal cord in the transition from quiet stance to walking.
    Serrao M; Ranavolo A; Andersen OK; Conte C; Don R; Cortese F; Mari S; Draicchio F; Padua L; Sandrini G; Pierelli F
    BMC Neurosci; 2012 Jul; 13():80. PubMed ID: 22800397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of whole-body muscle activations following vertical perturbations during standing and walking.
    Cano Porras D; Jacobs JV; Inzelberg R; Bahat Y; Zeilig G; Plotnik M
    J Neuroeng Rehabil; 2021 May; 18(1):75. PubMed ID: 33957953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loading during the stance phase of walking in humans increases the extensor EMG amplitude but does not change the duration of the step cycle.
    Stephens MJ; Yang JF
    Exp Brain Res; 1999 Feb; 124(3):363-70. PubMed ID: 9989442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity.
    Ivanenko YP; Grasso R; Macellari V; Lacquaniti F
    J Neurophysiol; 2002 Jun; 87(6):3070-89. PubMed ID: 12037209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preserved gait kinematics during controlled body unloading.
    Awai L; Franz M; Easthope CS; Vallery H; Curt A; Bolliger M
    J Neuroeng Rehabil; 2017 Apr; 14(1):25. PubMed ID: 28376829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early corrective reactions of the leg to perturbations at the torso during walking in humans.
    Misiaszek JE; Stephens MJ; Yang JF; Pearson KG
    Exp Brain Res; 2000 Apr; 131(4):511-23. PubMed ID: 10803419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle activation during body weight-supported locomotion while using the ZeroG.
    Fenuta AM; Hicks AL
    J Rehabil Res Dev; 2014; 51(1):51-8. PubMed ID: 24805893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlimb coordination of leg-muscle activation during perturbation of stance in humans.
    Dietz V; Horstmann GA; Berger W
    J Neurophysiol; 1989 Sep; 62(3):680-93. PubMed ID: 2769353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of body load on the gait pattern in Parkinson's disease.
    Dietz V; Colombo G
    Mov Disord; 1998 Mar; 13(2):255-61. PubMed ID: 9539338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leg muscle activation during gait in Parkinson's disease: adaptation and interlimb coordination.
    Dietz V; Zijlstra W; Prokop T; Berger W
    Electroencephalogr Clin Neurophysiol; 1995 Dec; 97(6):408-15. PubMed ID: 8536593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leg muscle activation during gait in Parkinson's disease: influence of body unloading.
    Dietz V; Leenders KL; Colombo G
    Electroencephalogr Clin Neurophysiol; 1997 Oct; 105(5):400-5. PubMed ID: 9363006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects.
    Mueller J; Engel T; Mueller S; Stoll J; Baur H; Mayer F
    PLoS One; 2017; 12(3):e0174034. PubMed ID: 28319133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental changes in compensatory responses to unexpected resistance of leg lift during gait initiation.
    Woollacott M; Assaiante C
    Exp Brain Res; 2002 Jun; 144(3):385-96. PubMed ID: 12021820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking.
    Carlson-Kuhta P; Trank TV; Smith JL
    J Neurophysiol; 1998 Apr; 79(4):1687-701. PubMed ID: 9535939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
    Pratt CA; Buford JA; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):832-42. PubMed ID: 8714656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.