These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 18306229)
21. Clinicopathological correlates of aspartyl (asparaginyl) beta-hydroxylase over-expression in cholangiocarcinoma. Maeda T; Taguchi K; Aishima S; Shimada M; Hintz D; Larusso N; Gores G; Tsuneyoshi M; Sugimachi K; Wands JR; de la Monte SM Cancer Detect Prev; 2004; 28(5):313-8. PubMed ID: 15542253 [TBL] [Abstract][Full Text] [Related]
22. Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma. Tannapfel A; Sommerer F; Benicke M; Weinans L; Katalinic A; Geissler F; Uhlmann D; Hauss J; Wittekind C J Pathol; 2002 Aug; 197(5):624-31. PubMed ID: 12210082 [TBL] [Abstract][Full Text] [Related]
23. Hepatobiliary and extra-hepatic malignancies in primary sclerosing cholangitis. Bergquist A; Broomé U Best Pract Res Clin Gastroenterol; 2001 Aug; 15(4):643-56. PubMed ID: 11492973 [TBL] [Abstract][Full Text] [Related]
24. Protein expression of double-stranded RNA-activated protein kinase (PKR) in intrahepatic bile ducts in normal adult livers, fetal livers, primary biliary cirrhosis, hepatolithiasis and intrahepatic cholangiocarcinoma. Terada T; Ueyama J; Ukita Y; Ohta T Liver; 2000 Dec; 20(6):450-7. PubMed ID: 11169059 [TBL] [Abstract][Full Text] [Related]
25. Cholangiocarcinoma in primary sclerosing cholangitis: K-ras mutations and Tp53 dysfunction are implicated in the neoplastic development. Boberg KM; Schrumpf E; Bergquist A; Broomé U; Pares A; Remotti H; Schjölberg A; Spurkland A; Clausen OP J Hepatol; 2000 Mar; 32(3):374-80. PubMed ID: 10735605 [TBL] [Abstract][Full Text] [Related]
26. An animal model of benign bile-duct stricture, sclerosing cholangitis and cholangiocarcinoma and the role of epidermal growth factor receptor in ductal proliferation. Cheifetz RE; Davis NL; Owen DA Can J Surg; 1996 Jun; 39(3):193-7. PubMed ID: 8640617 [TBL] [Abstract][Full Text] [Related]
27. Precancerous bile duct pathology in end-stage primary sclerosing cholangitis, with and without cholangiocarcinoma. Lewis JT; Talwalkar JA; Rosen CB; Smyrk TC; Abraham SC Am J Surg Pathol; 2010 Jan; 34(1):27-34. PubMed ID: 19898228 [TBL] [Abstract][Full Text] [Related]
28. Over-expression of polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. Sasaki M; Yamaguchi J; Itatsu K; Ikeda H; Nakanuma Y J Pathol; 2008 Jun; 215(2):175-83. PubMed ID: 18393368 [TBL] [Abstract][Full Text] [Related]
30. Prevalence and risk factors for gallbladder neoplasia in patients with primary sclerosing cholangitis: evidence for a metaplasia-dysplasia-carcinoma sequence. Lewis JT; Talwalkar JA; Rosen CB; Smyrk TC; Abraham SC Am J Surg Pathol; 2007 Jun; 31(6):907-13. PubMed ID: 17527079 [TBL] [Abstract][Full Text] [Related]
31. p53 Protein overexpression in cholangiocarcinoma arising in primary sclerosing cholangitis. Rizzi PM; Ryder SD; Portmann B; Ramage JK; Naoumov NV; Williams R Gut; 1996 Feb; 38(2):265-8. PubMed ID: 8801209 [TBL] [Abstract][Full Text] [Related]
32. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma. Taniai M; Higuchi H; Burgart LJ; Gores GJ Gastroenterology; 2002 Oct; 123(4):1090-8. PubMed ID: 12360471 [TBL] [Abstract][Full Text] [Related]
33. PTEN deficiency induces an extrahepatic cholangitis-cholangiocarcinoma continuum via aurora kinase A in mice. Yang Y; Wang J; Wan J; Cheng Q; Cheng Z; Zhou X; Wang O; Shi K; Wang L; Wang B; Zhu X; Chen J; Feng D; Liu Y; Jahan-Mihan Y; Haddock AN; Edenfield BH; Peng G; Hohenstein JD; McCabe CE; O'Brien DR; Wang C; Ilyas SI; Jiang L; Torbenson MS; Wang H; Nakhleh RE; Shi X; Wang Y; Bi Y; Gores GJ; Patel T; Ji B J Hepatol; 2024 Jul; 81(1):120-134. PubMed ID: 38428643 [TBL] [Abstract][Full Text] [Related]
34. Diagnostic benefit of biliary brush cytology in cholangiocarcinoma in primary sclerosing cholangitis. Boberg KM; Jebsen P; Clausen OP; Foss A; Aabakken L; Schrumpf E J Hepatol; 2006 Oct; 45(4):568-74. PubMed ID: 16879890 [TBL] [Abstract][Full Text] [Related]
35. Modulation of activation-induced cytidine deaminase by curcumin in Helicobacter pylori-infected gastric epithelial cells. Zaidi SF; Yamamoto T; Refaat A; Ahmed K; Sakurai H; Saiki I; Kondo T; Usmanghani K; Kadowaki M; Sugiyama T Helicobacter; 2009 Dec; 14(6):588-95. PubMed ID: 19889077 [TBL] [Abstract][Full Text] [Related]
36. Molecular mechanisms of cholangiocarcinogenesis: are biliary intraepithelial neoplasia and intraductal papillary neoplasms of the bile duct precursors to cholangiocarcinoma? Bickenbach K; Galka E; Roggin KK Surg Oncol Clin N Am; 2009 Apr; 18(2):215-24, vii. PubMed ID: 19306808 [TBL] [Abstract][Full Text] [Related]
37. Unique epithelial cell production of hepatocyte growth factor/scatter factor by putative precancerous intestinal metaplasias and associated "intestinal-type" biliary cancer chemically induced in rat liver. Lai GH; Radaeva S; Nakamura T; Sirica AE Hepatology; 2000 Jun; 31(6):1257-65. PubMed ID: 10827151 [TBL] [Abstract][Full Text] [Related]
38. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Jaiswal M; LaRusso NF; Burgart LJ; Gores GJ Cancer Res; 2000 Jan; 60(1):184-90. PubMed ID: 10646872 [TBL] [Abstract][Full Text] [Related]
39. Intrahepatic cholangiocarcinoma arising in multiple bile duct hamartomas: report of two cases and review of the literature. Xu AM; Xian ZH; Zhang SH; Chen XF Eur J Gastroenterol Hepatol; 2009 May; 21(5):580-4. PubMed ID: 19282767 [TBL] [Abstract][Full Text] [Related]
40. The alphavbeta6 integrin is a highly specific immunohistochemical marker for cholangiocarcinoma. Patsenker E; Wilkens L; Banz V; Osterreicher CH; Weimann R; Eisele S; Keogh A; Stroka D; Zimmermann A; Stickel F J Hepatol; 2010 Mar; 52(3):362-9. PubMed ID: 20137822 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]